Supporting Information

Sensitive Fluorescence Assay of Anthrax Protective Antigen with Two New DNA Aptamers and Their Binding Properties

Byul Nim Oh,^a Sungeun Lee,^a Hye-Yeon Park,^b Moon-Young Yoon,^b Jinheung Kim^a*

[*] B. N. Oh, S. Lee, Prof. Dr. J. Kim Department of Chemistry and Nano Science Ewha Womans University Seoul 120-750, Korea Fax: (+82) 2-3277-3643 E-mail: jinheung@ewha.ac.kr

> H.-Y. Park, Prof. Dr. M.-Y. Yoon Department of Chemistry Hanyang University Seoul 120-750, Korea

[**] This research was supported by a grant (#2008) from BioGreen 21 Program, Rural Development Administration, the SRC/ERC program of MOST/KOSEF (R11-2005-008-000-0 to J.K.), Seoul R&BD program (10816), National Research Foundation of Korea Grant funded by the Korean Government(2009-0087304), the Korea Research Foundation (Basic Research Promotion Fund, KRF-2008-313-C00437), and BK21 (to BNO, SL).

Figure S1. Fluorescence emission spectra ($\lambda_{ex} = 480 \text{ nm}$) of OG in the presence of 40 nM 2 (solid) and 2-PA (dashed). 2-PA was prepared incubating 40 nM 2 with 60 nM PA for 5 min at 35 °C in HEPES (pH = 7.4). The fluorescence intensities are plotted in arbitrary units (au).

Figure S2.Emission spectra of OG with 1 (black), BSA (orange), and 1–BSA (red). 1–BSA was prepared by incubation of 40 nM 1 with 80 nM BSA in HEPES.

Figure S3. Emission spectra of OG in the presence of N3 (black) and N3–PA (red).

Figure S4. Circular dichroism spectra of 40 nM PA, 40 nM 1, and 1-PA. 1-PA was prepared by incubating 40 nM 1 with 40 nM PA in HEPES (pH = 7.4).

Figure S5. Fluorescence emission spectra ($\lambda_{ex} = 480 \text{ nm}$) of OG in the presence of 40 nM 1 (solid), and 1-PA (dashed) in 5 mM phosphate buffer (pH = 7.4). 1-PA was prepared incubating 40 nM 1 with 60 nM PA for 5 min at 35 °C.

Figure S6. Fluorescence emission spectra ($\lambda_{ex} = 480 \text{ nm}$) of OG in the presence of 40 nM **1** (solid), and **1**-PA (dashed) in HEPES buffer at pH = (a) 5.3 and (b) 8.0. The fluorescence intensities are plotted in arbitrary units (au).

Figure S7. Circular dichroism spectra of 40 nM PA, 40 nM 1/C1, and 1/C1-PA. The 1/C1-PA solution was prepared by incubating 40 nM 1/C1 with 40 nM PA in HEPES (pH = 7.4).

Figure S8. Fluorescence emission spectra of OG in the presence of 40 nM 1/C1 (black), and 1/C1-BSA (red). 1/C1 –BSA was prepared by incubation of 40 nM 1/C1 with 80 nM BSA in HEPES.

Figure S9. Emission spectra of OG with 40 nM 1/C2 (black) and 1/C2 incubated with 60 nM PA (red). The fluorescence intensities are plotted in arbitrary units (au).

Figure S10. Calculated values and plots of the 1-PA and 2-PA ternary complexes formed from 1 and 2, respectively, based on the chemical equilibrium equations about dissociation of 1-PA and 2-PA and K_d values reported (8.53 and 1.51 nM for 1 and 2, respectively).