Indicator approach to develop a chemosensor for the colorimetric sensing of thiol-containing in water and its application for the thiol detection in plasma

Fang-Jun Huo,^a Yu-Tao Yang,^b Jing Su,^b Yuan-Qiang Sun,^a Cai-Xia Yin,*^bXu-Xiu Yan^b

^aResearch Institute of Applied Chemistry and^bKey Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.

- Figure S1: Choice of pH-range for the Measurement
- Figure S2: The experiments of UV-vis spectrophotometer titration for Cu²⁺: XO
- Figure S3: The determination of the stoichiometry for Cu²⁺:Cys using the experiments of UV-vis Spectrophotometer Titration
- **Figure S4:** Data of Absorbance for the ensemble of Cu²⁺-XO-Cys
- Figure S5: Other amino acids do not affect on Cys detection
- Figure S6: The color change photograph for Cys and other amino acids
- Figure S7: Excluded various anions interfering to determination of Cys
- Figure S8: Choice of metal ions Part I
- Figure S9: Choice of metal ions Part II
- Figure S10: The binding constants
- Figure S11: Xylenol orange changes its color from yellow to red due to the solution pH change with a conversion point at pH≈6.3 (yellow when pH<6.3 and red while pH>6.3)
- Figure S12: A detection of Homocysteine (Hcy) with Cu²⁺-XO ensemble
- Figure S13: The color picture of aminothiols from plasma

Figure S1 Choice of pH-range for the Measurement.

The absorbance under various pH values. These black lines represent the absorbance of XO (25 μ M), red ones are the absorbance of [Cu(XO] (25 μ M, XO + 25 μ M CuCl₂), and the green ones the absorbance of the ensemble when 80 μ M Cys was added into the solution of [Cu(XO] (25 μ M). The pH (5.0-8.0) of the buffers (10 mM HEPES) was adjusted with 5 M NaOH or 6 M HCl.

Figure S3 To determine the coordination ratio of Cu^{2+} to Cys. Cys was added to the solution of Cu^{2+} -XO (25 μ M) in HEPES (10 mM) buffer.

Figure S4 Dada of Absorbance for the Ensemble of Cu²⁺-XO-Cys

The working curve for Cys measurement (**Figure S4**) was plotted with the absorbance value against various concentrations of Cys (12, 24, 48, 96, 192 μ M) (**Table S1**). The average of ε is 6350 L·mol⁻¹·cm⁻¹. Base a hypothetic equation: **A=Kc+B**. These data was analyzed using the software OriginPro 7.0.

Table S1		
Conc. of Cys / µM	Absorbance	
12.0	0.1274	
24.0	0.2634	
48.0	0.3952	
96.0	0.7436	
192.0	1.2811	

Plot the absorbance value against total concentrations of Cys. Dots are experiments data, the curve is best fit with linear regression R^2=0.9953

Only cysteine causes the color change from violet-red to yellow. **Concentrations:** Cu^{2+} -XO (25 μ M); [Cys]=100 μ M; [other amino acids] = 5000 μ M.

Figure S6 Other amino acids do not affect Cys.

UV/Vis spectra of the [Cu(XO)] mixture (25 μ M in a pH 6.0, 10 mM HEPES buffer solution) was added with various other amino acids 5000 μ M and Cys 100 μ M in final concentration.

Free Fluoride Chloride Phosphate Acetate Oxalate Carbonate Nitrate Cysteine

Figure S8 Cd²⁺, Zn²⁺, Ca²⁺, Ni²⁺, Mn²⁺, Co²⁺, Pb²⁺, Yb³⁺, Tb³⁺, Eu³⁺, Ce³⁺, Nd³⁺ ions (metal ions Part I).

UV/Vis spectrophotometry showed that other metal ions could not play the same sensor-role for the assay. These metal ions can lead XO indicator color change from yellow to purple-red and give rise to UV-vis spectra variation, however, their XO ensembles were incapable of detecting Cys based on the above facts that the systems had almost not any response to adding Cys in UV-vis spectra.

Figure S9 With Fe^{3+} , Cr^{3+} , Zr^{4+} , Bi^{2+} , Hg^{2+} , Mg^{2+} , La^{3+} cations (metal ions Part II).

UV/Vis spectrophotometry showed that other metal ions could not play the same sensor-role for the assay. They could not bring the UV-vis spectrum change of XO molecule.

Figure S10 The binding constants

We calculated binding constants of them by spectrophotometric titration on UV-Vis as followings:

A curve of absorbance with increasing Cu^{2+} and ΔA has been developed (left). A curve on [Cys] to ΔA is also presented(right). From the curves, the related binding constants in the coordination equation have been calculated:

$$XO + Cu^{2+} = CuXO \qquad K_{Cu-XO}^{298K} = 2.41 \times 10^8$$
(1)

 $4Cys + CuXO = Cu (Cys)_4 + XO$ $K_{Cu-XO}^{298K} = 1.07 \times 10^{15}$ (2)

From the data, one could find that Cys binded with Cu^{2+} much more tight than with XO, quantitatively, over 7 orders.

Left: In a XO (25 μ M) solution, the value of ΔA at 572nm changes with the addition of Cu²⁺; right: in the solution of CuXO (25 μ M), the value of ΔA at 572nm changes with the addition of [Cys].

Figure S11 Xylenol orange changes its color from yellow to red due to the solution pH change with a conversion point at $pH\approx6.3$ (yellow when pH<6.3 and red while pH>6.3)

Figure S12 A detection of Cu^{2+} -XO for Homocysteine (Hcy) by UV-vis spectra and naked-eye.

The UV-vis spectral changes of Cu^{2+} -XO (25 μ M) upon addition of Hcy [final concentration: 0, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480, 500 μ M]

The Hcy detection color changes picture of different concentrations based on Cu^{2+}-XO (25 $\,\mu\text{M})$ system

Figure S13 The color picture of aminothiols from plasma.

Cu(II)-XO+Serum