Supplementary Information:

Colorimetric filtrations of metal chelate precipitations for the quantitative determination of nickel(II) and lead(II)

Liang Feng,* Yue Zhang, Liying Wen, Liang Chen, Zheng Shen, Yafeng Guan*

Laboratory of Instrumentation and Analytical Chemistry, Key Lab of Separation Science for Analytical Chemistry of CAS, Dalian Institute of Chemical Physics, CAS, Dalian, Liaoning 116023, P. R. China, E-mail: fengl@dicp.ac.cn; guanyafeng@dicp.ac.cn

Figure S1. The experimental set-up for colorimetric filtrations of metal chelate precipitations.

Figure S2. The relationship between total colorimetric response and Ni²⁺ concentrations.

Supporting Information p. S1 of 5.

Figure S3. The colorimetric responses of nioxime-coexistence ions w/o Ni^{2+} on cellulose acetate/nitrate membranes in green channel of a) grey columns: nioxime- Ni^{2+} complex compound with the coexistence of 18 different interferant ions; b) white columns: 18 different individual interferant ions without Ni^{2+} .

Figure S4. The colours of cellulose acetate/nitrate membrane after 5 min filtration of nioxime-coexistent metal complex compound.

Figure S5. The effect of nioxime-Ni²⁺ precipitation time to colorimetric response in green channel.

Supporting Information p. S2 of 5.

Figure S6. The UV-Vis spectrum of Rhodizonic acid disodium salt (10 mg/L).

Figure S7. The UV-Vis spectrum of Rhodizonic acid disodium salt-Pb²⁺ complex compound.

Figure S8. The colours of cellulose acetate/nitrate membrane after 10 min filtration of rhodizonic acid disodium salt-Pb²⁺ complex compound at the existence of 18 interferant ions at different tolerance ratios.

Supporting Information p. S3 of 5.

Figure S9. pH dependent colorimetric response in red channel of Pb²⁺-rhodizonic acid disodium salt complex compound.

Figure S10. (a) Ni^{2+} determination in tap water. Ni^{2+} content in tap water was first determined. Using our approach, the Ni^{2+} content in tap water was calculated as 180 nM, which is below WHO drinking water safe-exposure standard and also in agreement with the results from city water supply company (~130 nM). A 2.5 μ M Ni²⁺ standard sample in tap water was also investigated, and the result was 1.9 μ M using our approach; (b) Pb²⁺ determination in tap water, Our approach can not be used to detect tap water directly since the drinking water safe-exposure standard is pretty low (0.01 mg/L). But a 10 μ M Pb²⁺ standard sample in tap water was still tested, and the result was 6.8 μ M using our approach.

Figure S11. The schematic functional handheld unit for Ni²⁺ determination.

Supporting Information p. S4 of 5.

Table S	1. The c	olorimetric	response (of single rhc	dizonic aci	id disodiun	n salt-Pb ²⁺	and rhodi	zonic aci	d disodium	salt-Pb ²⁺ -co	bexistence ic	ins.
	Concn	Control ED	Control (Red)	Control (Green)	Control (Blue)	Total ED	Channel Red	Channel Green	Channel Blue	Deviation(%) Red	Deviation(%) Green	Deviation(%) Blue	Ratio
Pb²⁺	1.00E-05	3.43	-0.07	0.70	3.08	75.14	-49.82	-54.28	-12.62	0	0	0	÷
Ni ²⁺	1.00E-05	17.03	-1.18	1.26	16.94	72.06	-50.15	-51.73	-1.20	-	ю́	-91	-
Hg ²⁺	1.00E-06	21.03	0.22	1.78	20.95	73.27	-50.33	-53.15	-3.16	-	Ņ	-75	0.1
Cd ²⁺	1.00E-05	7.76	-1.49	0.91	7.56	77.80	-54.38	-55.43	-4.75	ი	7	-62	~
Cr04	1.00E-06	5.54	-2.48	0.53	4.93	76.55	-52.83	-54.91	-7.32	9	-	42	0.1
Zn ²⁺	1.00E-04	38.25	4.04	0.71	38.03	71.62	-50.51	-50.70	-2.76	-	-7	-78	10
Cu ²⁺	1.00E-06	6.11	-0.22	1.43	2.60	63.69	-44.23	-45.82	0.31	-11	-18	-102	0.1
Co ²⁺	1.00E-05	9.01	-1.67	-0.09	8.85	77.63	-54.29	-55.16	-6.10	ი	0	-52	~
Fe ³⁺	1.00E-05	14.24	-6.49	-12.39	-2.68	69.89	-46.03	-52.40	-4.46	φ	4	-65	~
¥	1.00E-02	4.33	-1.01	-1.10	4.06	72.01	-49.91	-51.84	-2.73	0	ų	-78	1000
Na⁺	1.00E-02	5.91	-0.59	0.38	5.86	69.69	-45.79	-48.46	1.50	ထု	-12	-112	1000
Ca ²⁺	1.00E-03	13.57	-1.63	0.33	13.57	75.76	-53.34	-53.73	-2.90	7	,	-77	100
Mg ²⁺	1.00E-02	17.47	-0.58	1.21	17.42	73.77	-51.80	-52.45	-2.78	4	ကု	-78	1000
S04 ²⁻	1.00E-02	13.05	-9.80	-8.61	0.42	71.25	-50.15	-50.61	-0.30	-	-7	-98	1000
NO ³ .	1.00E-02	4.33	-1.01	-1.10	4.06	72.01	-49.91	-51.84	-2.73	0	ų	-78	1000
	1.00E-02	2.39	1.42	0.35	1.89	74.93	-52.64	-53.14	-4.42	9	Ņ	-65	1000
iL.	1.00E-02	15.85	6.97	8.22	11.62	73.34	-51.52	-52.19	-0.85	ю	4	-93	1000
Ac	1.00E-03	3.16	-0.16	0.10	3.15	75.75	-52.63	-54.36	-3.65	9	0	-71	100
co ₃ 2-	1.00E-05	4.93	-0.65	0.24	4.88	75.62	-53.07	-53.62	-5.17	7	5	-59	-