Supplementary Data

Table of contents

Page No	<u>Content</u>
2	General Methods
4	¹ H NMR Spectra of 1 .
4	¹³ C NMR Spectra of 1 .
5	¹ H NMR Spectra of 2 .
5	13 C NMR Spectra of 2 .
6	¹ H NMR Spectra of 3 .
6	¹³ C NMR Spectra of 2 .
7	(a) UV- <i>vis</i> spectra of 3 (52 μ M) in the presence of 10 equivalents of various anion in H ₂ O/THF (1/1, v/v)
7	(b) UV-vis spectra of 3 (170 μ M) in the presence of the same
	equivalents of iodide (170 μ M) in H ₂ O/THF (1/1, v/v)
8	UV-vis spectra of 3 (13 μ M) in H ₂ O/THF (1:1, v/v) upon addition of
	increasing concentrations of I(TBA); $\lambda_{ex} = 276$ nm.
8	Stern-Volmer plot of 3 with $I(n-Bu)_4N$ in H_2O/THF (1:1, v/v)
9	Stern-Volmer plot of 3 with $Br(n-Bu)_4N$ in H_2O/THF (1:1, v/v)
9	Stern-Volmer plot of 3 with $CH_3COO(n-Bu)_4N$ in H_2O/THF (1:1,
	v/v)
10	Stern-Volmer plot of 3 with $Cl(n-Bu)_4N$ in H_2O/THF (1:1, v/v)
10	Stern-Volmer plot of 3 with $F(n-Bu)_4N$ in H_2O/THF (1:1, v/v)
11	Stern-Volmer plot of 3 with $H_2PO_4(n-Bu)_4N$ in H_2O/THF (1:1, v/v)
11	Stern-Volmer plot of 3 with $HSO_4(n-Bu)_4N$ in H_2O/THF (1:1, v/v)
12	Stern-Volmer plot of 3 with $NO_3(n-Bu)_4N$ in H_2O/THF (1:1, v/v)
12	¹ H NMR spectra of 3 (10 mM) in the presence of 0.5-2.0 equiv of
	TBA(I) in _{d-8} THF/D ₂ O (1:1, v/v).
13	¹¹ B NMR spectra (CD ₃ OD) of (a) 3 and (b) 3 upon adding 1 equiv
	of (<i>n</i> -Bu) ₄ NI

1. Experimental

1.1 General Methods:

All reagents were obtained from commercial suppliers and were used without further purification. CH₃CN was distilled over CaH₂. Analytical thin-layer chromatography was performed using silica gel 60 F254 plates (Merck). The ¹H and ¹³C NMR spectra were recorded with Bruker AM 300 (300 MHz) spectrometers. Chemical shifts are expressed in ppm with residual CHCl₃ as reference. Low- and high-resolution mass spectra were recorded under electron ionization (EI) conditions. UV-vis spectra were recorded by using HP-8453 spectrophotometer with a diode array detector, and the resolution was set at 1 nm. Fluorescence spectra were recorded on a Cary Eclipse Fluorescene spectrophotometer.

1-bromo-2-(bromomethyl)naphthalene (1)

To a solution of 1-bromo-2-methylnaphthalene (2.01 g, 9.1 mmol) in dry acetonitrile was added *N*-bromosuccinimide (1.90 g, 10.7 mmol), AIBN (0.40 g, 2.4 mmol). The reaction mixture was stirred 2 hours under reflux, the mixture was concentrated, and then purified by silica column chromatography (Hexane) to give **1** (2.30 g, 85%) as a white solid; ¹H NMR (CDCl₃, 300 MHz) δ 8.31 (d, *J* = 8.7 Hz, 1H), 7.81–7.75 (m, 2H), 7.62–7.47 (m, 3H), 4.84 (s, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 134.9, 134.1, 132.5, 128.3, 128.1, 127.8, 127.7, 127.6, 127.2, 124.9, 34.7; HRMS (EI): Calcd for C₁₁H₈Br₂ (M⁺), m/z 297.8993, found m/z 297.9001.

1,2-bis(2-((1-bromonaphthalen-2-yl)methoxy)ethoxy)ethane (2)

To a solution of triethylene glycol (0.2 mL, 1.5 mmol) in dry THF was added sodium

hydride (60%) (0.15 g, 3.8 mmol) at 0°C. The mixture was stirred for 10 mines, **1** (1.01 g, 3.4 mmol) was added and stirred for 4 hours at room temperature. Quench with 5 mL H₂O and then concentrated. The mixture was dissolved in CH₂Cl₂ and extracted, filtered, concentrated. The mixture was purified by silica column chromatography (hexane/EtOAc = 8 : 1) to give **2** (0.57 g, 65%) as a yellow oil;

¹H NMR (CDCl₃, 300 MHz) δ 8.29 (d, *J* = 8.4 Hz, 2H), 7.77–7.74 (m, 4H), 7.65–7.62 (m, 2H), 7.57–7.46 (m, 4H), 4.86 (s, 4H), 3.75–3.72 (m, 12H); ¹³C NMR (CDCl₃, 75 MHz) δ 135.7, 133.7, 131.9, 127.9, 127.5, 127.1, 126.7, 126.2, 125.8, 122.1, 73.0, 70.6, 70.5, 69.9; HRMS (EI): Calcd for C₂₈H₂₈Br₂O₄ (M⁺), m/z 586.0354, found m/z 586.0363.

fluorescent sensor (3)

To a solution of **2** (1.01 g, 1.7 mmol) in dry THF were added *n*-BuLi (1.6M) (2.3 mL, 3.7 mmol) at -78°C. The reaction mixture was stirred for 1 hour at -78°C, then B(OMe)₃ (1.0 mL, 8.8 mmol) was added. The resulting mixture was stirred overnight at room temperature. The reaction mixture was acidified with aq 10% HCl solution and extracted with Et₂O. Remove the organic solvent, the mixture was purified by silica column chromatography (hexane/EtOAc = 6 : 1) to give **3** (0.59 g, 66%) as a yellow oil; ¹H NMR (CDCl₃, 300 MHz) δ 7.85–7.81 (m, 6H), 7.52–7.46 (m, 6H), 4.73 (s, 4H), 3.72–3.69 (m, 12H); ¹³C NMR (CDCl₃, 75 MHz) δ 135.7, 133.2, 132.9, 128.0, 127.8, 127.6, 126.4, 125.9, 125.7, 73.2, 70.6 (2C), 69.3

Figure S2 13 C NMR (75.4 MHz) spectrum of 1 in CDCl₃

Figure S4 ¹³C NMR (75.4 MHz) spectrum of 2 in CDCl₃

Figure S6¹³C NMR (75.4 MHz) spectrum of 3 in CDCl₃

Figure S7 (a) UV-*vis* spectra of 3 (52 μ M) in the presence of 10 equivalents of various anion in H₂O/THF (1/1, v/v)

Figure S7 (b) UV-vis spectra of 3 (170 μ M) in the presence of the same equivalents of iodide (170 μ M) in H₂O/THF (1/1, v/v)

Figure S8 UV-*vis* spectra of **3** (13 μ M) in H₂O/THF (1:1, v/v) upon addition of increasing concentrations of I(TBA).

Figure S9 Stern-Volmer plot of 3 with $(n-Bu)_4$ NI in H₂O/THF (1:1, v/v)

Figure S11 Stern-Volmer plot of 3 with $(n-Bu)_4$ NOAc in H₂O/THF (1:1, v/v)

Figure S12 Stern-Volmer plot of 3 with (*n*-Bu)₄NCl in H₂O/THF (1:1, v/v)

Figure S13 Stern-Volmer plot of 3 with (*n*-Bu)₄NF in H₂O/THF (1:1, v/v)

Figure S15 Stern-Volmer plot of 3 with (*n*-Bu)₄NHSO₄ in H₂O/THF (1:1, v/v)

Figure S16 Stern-Volmer plot of 3 with (*n*-Bu)₄NNO₃ in H₂O/THF (1:1, v/v)

Figure S17 ¹H NMR spectra of **3** (10 mM) in the presence of 0.5-2.0 equiv of $(n-Bu)_4$ NI in $_{d-8}$ THF/D₂O (1:1, v/v).

(n-Bu)₄NI

•