Supporting Information

Effect of monovalent cations (Li⁺, Na⁺, K⁺, Cs⁺) on self-assembly of thiol-modified double-stranded and single-stranded DNA on gold electrode

Zhiguo Li,^{a,b} Tianxing Niu,^a Zhenjiang Zhang,^{a,c} Guiying Feng,^a and Shuping Bi*^a

- ^a School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry & Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093, China
- ^bSchool of Chemistry Science and Technology, Zhanjiang Normal University, Zhanjiang 524048, Guangdong, China
- ^cCollege of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215006, China

Contents

- 1. Scheme for self-assembly process of thiol-modified ds-DNA or ss-DNA on gold.
- 2. Interfacial parameters for characterizing ds-DNA-SAMs on gold assembled in 0.1 M or 1 M LiCl, NaCl, KCl, CsCl solutions.
- Interfacial parameters for characterizing ss-DNA-SAMs on gold assembled in 0.1 M or 1 M LiCl, NaCl, KCl, CsCl solutions.
- 4. Confirmation of our experimental results (Γ_m , C, R_{it}^* , Δi , R_{ct})
- 5. References

<u>1. Scheme for self-assembly process of thiol-modified ds-DNA or ss-DNA on gold.</u></u>

Scheme S1. Self-assembly process of thiol-modified ds-DNA or ss-DNA on gold. (Chloride aqueous solution is 0.1 M or 1 M LiCl, NaCl, KCl, CsCl aqueous solution; PBS is 5 mM phosphate-50 mM NaCl, pH 7.0).

2. Interfacial parameters for characterizing ds-DNA-SAMs on gold assembled in 0.1 M or 1 M LiCl, NaCl, KCl, CsCl solutions

Assembly electrolytes	Surface coverage	Ions penetration (5 mM phosphate-50 mM NaCl, pH 7.0)							Charge transfer $(2 \text{ mM Fe}(\text{CN})_6^{3-/4-})$		
	CC			CV	7				EIS	CV	EIS
	$\Gamma_{\rm m}$			<i>С</i> (µF (cm^{-2})			$arPsi_{ m 1Hz}$	R_{it}^*	Δj	$R_{\rm ct}$
	(10^{-11})	0.1	0.5	1	5	20	50	(°)	$(\Omega \text{ cm}^2)$	$(\mu A \text{ cm}^{-2})$	$(\Omega \text{ cm}^2)$
	$mol \ cm^{-2}$)	$V s^{-1}$	$V s^{-1}$	$V s^{-1}$	$V s^{-1}$	$V s^{-1}$	$V s^{-1}$				
0.1 M LiCl	0.5	19.4	12.8	10.6	6.8	4.8	3.9	70	$1.7 imes 10^4$	129	$7.6 imes 10^3$
0.1 M NaCl	0.7	17.0	12.4	11.0	8.7	7.1	6.3	76	1.6×10^4	320	2.2×10^3
0.1 M KCl	0.6	24.6	17.7	15.3	10.5	7.7	6.4	74	1.2×10^4	183	5.4×10^3
0.1 M CsCl	0.6	22.6	16.1	13.8	9.9	7.5	6.4	74	1.3×10^4	266	2.0×10^3
1 M LiCl	1.4	16.7	11.8	10.3	7.7	6.3	5.7	75	$1.7 imes 10^4$	23	$5.2 imes 10^4$
1 M NaCl	1.8	21.2	15.1	12.9	9.4	7.7	7.0	75	$1.4 imes 10^4$	30	$4.5 imes 10^4$
1 M KCl	1.4	22.0	15.6	13.7	10.4	8.4	7.3	76	1.3×10^4	80	$1.3 imes 10^4$
1 M CsCl	1.1	22.4	14.8	12.4	8.5	6.6	5.8	72	1.4×10^4	60	1.7×10^4

Table S1. Parameters for characterizing ds-DNA-SAMs on gold assembled in 0.1 M or 1 M LiCl, NaCl, KCl, CsCl solutions

3. The parameters for characterizing ss-DNA-SAMs on gold assembled in 0.1 M or 1 M LiCl, NaCl, KCl, CsCl solutions

Table S2. Parameters for characterizing ss-DNA-SAMs on gold assembled in 0.1 M or 1 M LiCl, NaCl, KCl, CsCl solutions

Assembly electrolytes	Surface coverage	Ions penetration (5 mM phosphate-50 mM NaCl, pH 7.0)							Charge transfer (2 mM Fe(CN) $_{6}^{3-/4-}$)		
	$\frac{CC}{\Gamma_{\rm m}} (10^{-11} {\rm mol} {\rm cm}^{-2})$	$\frac{CV}{C (\mu F \text{ cm}^{-2})}$					${I\!\!\!\!/}_{ m Hz}$	EIS R_{it}^*	CV Δj	EIS R _{ct}	
		0.1 V s ⁻¹	$0.5 \ V \ s^{-1}$	$1 V s^{-1}$	$ \begin{smallmatrix} 5 \\ V \ s^{-1} \end{smallmatrix} $	$\begin{array}{c} 20 \\ V \ s^{-1} \end{array}$	$\begin{array}{c} 50 \\ V \ s^{-1} \end{array}$	(°)	$(\Omega \text{ cm}^2)$	$(\mu A \text{ cm}^{-2})$	$(\Omega \text{ cm}^2)$
0.1 M LiCl	1.9	11.7	7.4	6.4	4.8	4.1	3.8	73	2.8×10^4	48	$3.7 imes 10^4$
0.1 M NaCl	2.0	20.8	14.8	12.4	9.1	7.2	6.4	73	$1.5 imes 10^4$	109	$7.8 imes10^3$
0.1 M KCl	2.2	16.7	11.4	9.9	7.4	5.9	5.4	75	$1.9 imes 10^4$	36	$5.6 imes 10^4$
0.1 M CsCl	2.3	15.4	10.5	9.1	7.0	5.9	5.3	75	2.0×10^4	32	$6.5 imes 10^4$
1 M LiCl	4.9	30.0	20.6	17.2	12.3	9.6	8.2	74	$1.1 imes 10^4$	15	$2.4 imes 10^5$
1 M NaCl	5.1	23.3	15.9	13.8	10.6	9.0	8.3	75	$1.3 imes 10^4$	19	$1.1 imes 10^5$
1 M KCl	3.9	44.2	29.7	24.8	16.6	12.1	10.1	72	$7.9 imes 10^3$	20	$2.2 imes 10^5$
1 M CsCl	4.0	22.2	15.0	13.0	9.2	6.9	6.0	75	$1.4 imes 10^4$	35	$9.1 imes 10^4$

- 4. Confirmation of our experimental results ($\Gamma_{\rm m}$, *C*, $R_{\rm it}^*$, Δi , $R_{\rm ct}$)
 - (a) Relative standard deviation (*RSD*) of experimental data (Γ_m , *C*, R_{it}^* , Δi , R_{ct}) from literature reports

Table S3. Relative standard deviation (*RSD*) of experimental data (Γ_m , *C*, R_{it}^* , Δi , R_{ct}) from literature reports

(a) Surface density of 5' thiol-modified 16mer oligonucleotide on gold after 6-mercapto-1-hexanol (MCH) treatment as a function of deposition period. Probe densities were determined electrochemically. The probe, sequence 5'-thiol-ACT-GAC-TGA-CTG-ACT-G-3', was deposited from a 1 mM solution for the indicated time, followed by exposure to 1 mM MCH for 1 h.¹

(II) C and R_{it}^*

Table 1. Capacitance of DNA-Modified Electrodes

monolayer	capacitance (μF/cm²)	nª
bare Au	43 ± 15	6
MCH	3.9 ± 0.1	10
P1	25 ± 8	4
P2	33 ± 7	4
P1/MCH	4.8 ± 0.2	8
P2/MCH	4.9 ± 0.2	8

^a The number of independent measurements on different monolayer preparations.

(b) Capacitance of 5' thiol-modified 25mer DNA-SAMs on gold was determined in 10 mM Tris buffer (pH 7.4).²

(c) Influence of fluorocarbon chain length (n) on the charge transfer resistance (R_{ct}) of SAMs prepared by exposure of gold to 0.2 mM $F_nH_{(16-n)}SH$ in CH_2Cl_2 for 48 h.³

Table 1. Results of the CNLS Fitting of the Impedance
Response for Different Deposition Times of the
n-Dodecyl Selenide on a Au(111) Single Crystal
Electrode ^a

deposition time, s	$R_{ m s}$, Ω	$R_{ m ct,} \ \Omega imes 10^{-6}$	CPE ($C_{ m dl}$) × 10 ⁷ , ^b F cm ²	φ
5	179.3 (1.10)	0.11 (0.50)	2.00 (1.50)	0.9795
10	177.1 (1.03)	1.17 (0.44)	1.11 (0.57)	0.9929
60	179.0 (1.28)	2.34 (0.69)	1.17(0.64)	0.9902
300	147.6 (1.02)	4.41 (0.56)	1.23 (0.39)	0.9850
$54\ 000$	148.2 (2.37)	7.52 (1.91)	1.34 (0.95)	0.9567
86 400	171.2 (0.74)	11.7 (0.72)	1.15(0.27)	0.9928

 a The percent errors from the fit for each element are given in parentheses. b The area of the electrode was equal to 0.0856 $\rm cm^{-2}$

(e) Impedance spectra for the Au/n-Dodecyl performed in solutions containing 0.5 mM $\text{Fe}(\text{CN})_6^{3-/4-}$ with 0.1 M NaClO₄. Au/n-Dodecyl was prepared by dipping the Au(111) electrodes into ~3 mM n-Dodecyl in ethyl alcohol for different time.⁵

^{*} The *RSD* of parameters (R_{it} * and Δj) for ds-DNA-SAMs and ss-DNA-SAMs on gold had been shown in our recently published papers,^{6,7} The *RSD* of Γ_m was smaller than 10%,¹ *RSD* of *C*, $\Phi_{1 \text{ Hz}}$ and R_{it} * was generally smaller than 20%,^{2,8} whereas *RSD* of Δj and R_{ct} was much bigger and even >100%.^{3-5,9}

(b) Experimentally cross-checked the experimental data (*C* values) for ds-DNA-SAMs and ss-DNA-SAMs on gold assembled in 0.1 M or 1 M LiCl, NaCl, KCl, CsCl solutions by *CV* and *EIS*

We calculated the *C* of ds-DNA-SAMs and ss-DNA-SAMs by *EIS* and drew the plots of *C* with frequency f_m . The aim was to further validate the data of *C* by *CV* in Figure 3C and Figure 5C in the manuscript. *C* calculated by *EIS* (Figure S1) was close to that by *CV* (Figure 3C and Figure 5C). Furthermore, *C* calculated by *EIS* decreased with the increase of f_m (Figure S1), consistent with the decrease of *C* calculated by *CV* with the increase of scan rate *v* (Figure 3C and Figure 5C).

Figure S1. The plot of *C* obtained from *EIS* ($_C = \frac{1}{2\pi f_m AZ''}$, *Z*'' was the imaginary parts of

impedance at the frequency $f_{\rm m}$, A was the real area of electrode)¹⁰ with frequency $f_{\rm m}$ for ds-DNA-SAMs (A) and ss-DNA-SAMs (B) on gold assembled under 0.1 M or 1 M LiCl, NaCl, KCl, CsCl solutions. In order to compare the C obtained from *EIS* with *CV*, $f_{\rm m}$ was designated close to $f_{\rm m} = \frac{v}{2\Delta E_{\rm m}} = \frac{v}{2(E_{\rm max} - E_{\rm min})}$ based on the potential zone $(2\Delta E_{\rm m} = 2(E_{\rm max} - E_{\rm min}) = 0.8 \text{ V})$ of a

CV scan period from -0.2 (E_{min}) to +0.2 V (E_{max}) and scan rate v (0.1, 0.5, 1, 5, 20, 50 V s⁻¹). f_m was calculated to be 0.12, 0.66, 1.18, 6.64, 25.7, 57.4 Hz.

5. References

- 1 A. B. Steel, R. L. Levicky, T. M. Herne and M. J. Tarlov, *Biophys. J.*, 2000, **79**, 975–981.
- 2 A. B. Steel, T. M. Herne and M. J. Tarlov, Anal. Chem., 1998, 70, 4670-4677.
- 3 R. D. Weinstein, J. Moriarty, E. Cushnie, R. Colorado, T. R. Lee, M. Patel, W. R. Alesi and G. K. Jennings, J. Phys. Chem. B, 2003, 107, 11626–11632.
- 4 R. D. Weinstein, D. Yan and G. K. Jennings, *Ind. Eng. Chem. Res.*, 2003, **40**, 2046–2053.
- 5 L. V. Protsailo, W. R. Fawcett, D. Russell and R. L. Meyer, *Langmuir*, 2002, **18**, 9342–9349.
- 6 Z. G. Li, T. X. Niu, Z. J. Zhang, R. Chen, G. Y. Feng and S. P. Bi, *Analyst*, 2011, **136**, 2090–2099.
- 7 Z. G. Li, T. X. Niu, Z. J. Zhang, R. Chen, G. Y. Feng and S. P. Bi, *Biosens. Bioelectron.*, 2011, 26, 4564–4570.
- 8 M. Tichoniuk, D. Gwiazdowska, M. Ligaj and M. Filipiak, *Biosens. Bioelectron.*, 2010, 26, 1618–1623.
- 9 Z. G. Li, T. X. Niu, Z. J. Zhang and S. P. Bi, *Electrochim. Acta*, 2010, 55, 6907–6916.
- 10 W. O. Ho, S. Krause, C. J. McNeil, J. A. Pritchard, R. D. Armstrong, D. Athey and K. Rawson, *Anal. Chem.*, 1999, **71**, 1940–1946.