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Multiparametric Testing

In an attempt for multiparametric feasibility, two SPM probes : lab-made y-Fe,O3; nanoparticles and
commercial Estapor beads (1020/50, Merck), are mixed at different ratios. The iron concentration of
the two ferrofluids was adjusted in order to obtain MIAplex® signatures at isointensity. Fig. S1A
shows the MIAplex® signatures of the two kinds of particles.

Fig. S1B-D shows the experimental MIAplex® signatures measured by mixing the two kinds of
particles in various proportions and the corresponding calculated curves. A rather good agreement is
obtained between experimental and calculated curves. This confirms the high sensitivity of measuring
d’B(H)/dH? for characterization and separation purpose.
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Figure S1: A : MIAplex® signature for nanoparticles (dashed line) and Estapor beads (solid
line). Experimental (open circles) and calculated (solid line) curves for 75%-25% (B), 50%6-50%
(C), and 25%-75% (D) nanoparticles-Estapor mixtures.

Synthesis and characterization of yFe,O; nanoparticles

Sodium n-dodecy! sulfate (99%, Alfa Aesar), dimethylamine solution (40%, Fluka), Iron (1) Chloride
Tetrahydrate (Sigma Aldrich) were used as received. Water is purified with a Millipore system
(resistivity 18.2 MQ.cm).

Concerning lab-made nanoparticles, they are synthesized according to a procedure already described.
Briefly, non coated yFe,O; particles were synthesized by reaction of ferrous dodecyl sulfate with
dimethylamine in water for two hours at 28°C". The nanocrystal surface is then functionalized with 5-
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hydroxy-5,5-bis(phosphono)pentanocic acid, which allows a good dispersion in water of the
nanoparticles. The nanoparticles surface is characterized via infrared spectroscopy (Fig. S1).
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Figure S2: Infrared spectra of free 5-hydroxy-5,5-bis(phosphono)pentanocic acid (HMBP)
(dotted line) and 10nm yFe,O;@HMBP nanoparticles (solid line).

The spectrum of free HMBP molecule contains peaks at 1706cm™ (C=0), 1637cm™ (carboxylic C-0),
1309 and 1213cm™ (8CH,), 1146 and 1059cm™ (P-O). The spectrum of coated nanoparticles presents
a very intense band at 577cm™ attributed to Fe and a large intense vibration band between 1150 and
950cm™ which corresponds to the P-O absorption band. Compared to free molecule, this modified
band indicates that the molecule is bonded at the surface of the particle via the hydroxymethylene-
bisphosphonate terminal function. The coating rate has been quantified via the P-O area band* and is
evaluated as about 1500 HMBP molecules per nanoparticle.

Nanoparticles crystal size and structure were characterized by X-ray diffraction (XRD) and
Transmission Electron Microscope (TEM). XRD pattern (Fig. S2 and S3) was measured with an X-ray
powder diffractometer model X Pert PRO, MPD, PANalytical, Almelo, the Netherlands, CoKo beam
in Bragg Brentano geometry (y/y) was used combined with a fast detector based on real time multiple
strip technology (X’Celerator). Crystal XRD size was determined with the Scherrer formula. TEM
images were obtained using a FEI CM10 Microscope and samples were prepared by depositing a drop
of nanoparticles suspension on carbon coated copper grids placed on a filter paper.
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Figure S3: XRD pattern 10nm yFe,O;@HMBP nanoparticles.
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Figure S4: XRD pattern of Ferrotec Nanoparticles

The stars Figure S3 indicate the presence of NaCl residue. Phases identified are maghemite yFe,O5 and
magnetite Fe;O, (EVA software (version 13, Bruker-AXS, Karlsruhe, Germany, 1996-2007) and
JCPDS-International Centre for Diffraction Data Powder Diffraction File (PDF-2, JCPDS-ICDD,
Newtown Square, PA)). Crystal size is determined via the Scherrer equation and is 9.9nm.

The median diameter d, and standard deviation w are deduced from TEM data measurements,
simulating the diameter d distribution with a lognormal function g(d) described in equation (1).
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The parameter o is related to the standard deviation w by the relation (2).
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Magnetic properties of yFe,O3; nanoparticles

Magnetic properties were measured using a superconducting quantum interference device (Quantum
Design SQUID Magnetometer MPMS-5T) at 300 K and the MIAplex® technology. Samples
measured with SQUID are liquid suspensions in water, 0.5wt%, conditioned in silicone capsules
supplied by Plastem S.A. Concerning the MIAplex®, samples are also liquid suspensions in water
0.5wt% and 2wt%, conditioned in 500uL Eppendorf.

The saturation magnetization is obtained by the extrapolation of the plot of magnetization vs the
inverse of the field at the origin’ (Fig. S4).
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Figure S5: Magnetization M as function of 1/H.
The red line is the asymptote when 1/H tends to zero. The intersection between this asymptote and y-
axis is the experimental saturation magnetization Mg.

Considering a core-shell system, the spin canting thickness e and the corresponding magnetic size (do-
2e) are deduced from the equation (2)°.
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For the lab-made nanoparticles with dq = 10.5nm as TEM diameter and Mg, = 61emu/g, we calculate a
magnetic size of d,, = 9.6nm, corresponding to a non magnetic layer of e ~ 0.45 nm. We estimate the
contribution of the shell in the total volume of the particles from the equation (3).
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We so obtained a shell contribution of 24% of the particle volume.

M A3)

The Langevin model of superparamagnetism* can be used to describe the non-linear magnetization
curve of the nanoparticles, assuming that particles do not interact, by the equation (4).
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v is the volume of the magnetic core, p is the particle density (4900kg.m™ for maghemite), Mgy
(emu.g™) is the saturation magnetization of the particle, T is the sample temperature in Kelvin (taken
to be 300 K), p is the permeability of vacuum (4z x 10" H.m™), H is the applied field (in A.m™) and
k, is the Boltzmann constant, 1.38 x 10 2 J.K™. As to model the experimental magnetic data, we have
used the Langevin equation weighted by a lognormal function (equation 1).

The experimental curves at high and medium magnetic field ranges are fitted with 1 Langevin
equation weighted by log-normal distribution.

At low magnetic field range, the experimental curve are fitted with the sum of 2 Langevin equations
weighted by log-normal distribution and corresponding to separate contributions.

The second derivative of the magnetization fit at high and medium magnetic field ranges is compared
with the MIAplex® signature (Figure S5).
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Figure S6: Second derivative of the magnetization fit at high and medium magnetic field range
(dotted line) superposed with the MI1Aplex® signal (solid line).
The second derivative of the high and medium magnetic field magnetization fit presents a peak-to-
peak line width in field AH,, = 14.4 + 0.2 kA.m™ which is about 3.7 times bigger than the MIAplex®

signature (AH,,= 3.9 £ 0.1 kKA.m™).
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