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1. Derivation of ordinary differential equations for mass transfer in zones A* and C* 

Mass transfer of A* and C* is described by the following equations: 
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where ∂x and ∂t are partial derivations by the spatial coordinate x and time t, respectively; A* and 
C* are linear concentrations of A* and C*, respectively (i.e. amounts of A* and C* per unit 
length of the reactor); B = const is a volume concentration of B; and vA and vC are the velocities 
of A* and C*; k+ and k are the rate constants of the forward and reversed processes in the 
following equilibrium: 
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Let us consider propagation patterns in a case of slow (teq >> tsep) or moderate-rate (teq ~ tsep) 
equilibration. In this case, the two peaks, A* and C*, can be identified at the flanks of the label 
distribution (or the distribution of mixture of A* and C*). They move with velocities vA and vC, 
respectively (Fig. S1). As a result, the following transformations hold in zone A*: 
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Here,  ax t  and  ax t  are coordinates of the boundaries of zone A* (Fig. S1). To derive 

transformations (S3) and (S4), we used equations (S1) and the four following relations: 
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The last equation in (S5) follows from the fact that the concentration C* vanishes at the left 
boundary of zone A*. 
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Figure S1. Spatial propagation pattern of the mixture of A* and C*. Their sum concentration 
coincides with that of the label. Areas corresponding to zones A* and C* are shaded. At vC > vA,, 
zone C* is located to the right of zone A* (both zones move from left to right). Coordinates of 
the boundaries of zone A* are denoted by xa and x+

a, whereas coordinates of the boundaries of 
zone C* are denoted by xc and x+

c. At k– > Bk+, peak C* is lower than peak A*. 
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Transformations similar to (S3) and (S4) hold in zone C*: 
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and 
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Here,  cx t  and  cx t  are coordinates of the left and right boundaries of zone C* (Fig. S1). To 

derive transformations (S4) and (S7), we again used equations (S1) and the following relations: 
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The last equation in (S8) follows from the fact that the concentration A* approaches zero at the 
right boundary of zone C*.  

Propagation patterns simulated with the exact solution of equations (S1) demonstrate the 
following behavior after introducing the initial plug containing compounds A* and C*. During 
time ~ tsep, the peak corresponding to compound C* moves out of zone A* and the peak 
corresponding to compound A* moves out of zone C*. As a result, the distribution of C* in zone 
A* and the distribution of A* in zone C* become monotonic and can be approximated using 
power series: 
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Since and * ( )C x * ( )A x are smooth functions that vanish at Ax and Cx , respectively, we have: 

0 1 0 10, 0, 0, 0c c a a    . (S11) 

Therefore: 
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By comparing expansions (S9) and (S10) to (S12) and taking into account only the leading terms 
in them, we obtain the following approximate relations: 
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Given expressions (S13), relations (S3), (S4), (S6), and (S7) can be rewritten in the form: 
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Here, *
aA and are the total amounts of A* and C* in the zone of A*: *
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aW  and are the widths of zones A* and C* that are defined by expressions: cW

,a a a c cW x x W x x      . (S18) 

By taking into account the following definitions for tsep and teq: 
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and by defining ax  and cx  so that the widths of zones A* and C* , Wa and Wc, respectively, 

would coincide with the initial plug width W: 

,a cW W W W  , (S20) 

we finally obtain ordinary differential equations for mass transfer: 
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Equations (S21) and (S22) are identical to equations (6) and (7) in the main text. They allow a 
significant simplification of the mathematical part of the developed parameter-based method for 
finding k+ and k. At the same time, this simplification results in only 10% relative errors in the 
rate constants as was shown by our detailed study (the results are shown in Fig. 5 of the main 
text). This accuracy is acceptable for most kinetic studies of biomolecular interactions. 
 
2. Solutions to ordinary differential equations for mass transfer in zones A* and C* 

System of linear differential equations (S21) has a critical point located at the origin in the 
phase plane (A*a, C*a) (Fig. S2). Similarly, system of equations (S22) has a critical point located 
at the origin in the plane (A*c, C*c). 

                        

*
aC

*
aA0

Sa

Sa

 

 

Figure S2. Qualitative phase portrait of system (S21). Its solutions are depicted by black lines in 
the plane * *( , )a aA C . Arrows show directions in which time increases. The thick straight lines 

represent solutions that satisfy the first condition from (S27). Rays OSa  and OS  intersect at a 

right angle if Kd = B. The ray OS  corresponds to the special solution (S34) and, therefore, 
a

a
*tan 0A Sa a a  . The phase portrait of system (S22) looks similar. 
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Let us denote eigenvalues of (S21) as a   and eigenvalues of (S21) as c  . These 

eigenvalues satisfy quadratic equations that follow from (S21) and (S22): 
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Roots of (S23) and (S24) are determined by expressions: 
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Here, plus and minus signs in subscripts (at a   and c  ) correspond, respectively, to plus and 

minus signs in front of the radicals. Obviously, both eigenvalues a   are real, distinct and 

negative. The same is true for eigenvalues c  . Therefore, both critical points are improper 

stable nodes.1,2 All solutions to system (S21) approach the point * 0,aA * 0aC   and all solutions 

to system (S22) approach the point * *0, 0c cA C   (Fig. S2). In physical terms, such a behavior 

means that peaks A* and C* gradually decrease and eventually disappear with increasing time. 
As a result of this relaxation process, all compounds A* and C* will be distributed over the 
“bridge”. It is well known that solutions to a system of two ordinary differential equations can 
approach an improper stable node with distinct eigenvalues only in two directions.1,2 Therefore, 

we have at t  : 

* *

* *

( ) ( )
,

( ) ( )
a c

a
a c

C t A t
const const

A t C t
    c  . (S27) 

where the plus and minus signs in subscripts correspond to these different directions. Only non-
negative values of a   and c   can describe physical processes since concentrations of A* and 

C* are non-negative quantities. This non-negativity condition for a  and c  fixes one possible 

direction in each node. Systems (S21) and (S22) have special solutions that satisfy (S27) at all 
t  0 rather than at t  . They correspond to straight lines in the phase planes * *( , )a aA C and 

* *( , )c cA C (Fig. S2). To find such solutions, we have to substitute  into system * ( * )a t( )C ta a A
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(S21) and to substitute *( ) ( )c c c
*A t C  t into system (S22). As a result, the following quadratic 

equations for a  and c  can be obtained: 
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The plus signs in front of the radicals obviously correspond to positive roots a a   and 

c c   . Expressions (S30) and (S31) for these roots can be rewritten as follows: 
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where a   and  c c . Given expression (S25) and (S26) for a   and c  , we also have:   
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Finally, direct substitutions of expressions: 
* *exp( , exp( )a a a a a aA N t C N t     , (S34) 

and 
* xp( *e ), exp( )c c c c c c cA N t C N t     (S35)  

into equations (S21) and (S22), respectively, show that (S34) and (S35) are solutions to these 
equations. Here,  and  are constant coefficients that relate to initial amounts aN cN *

0A  and  of 

compounds A* and C* in the plug: 

*
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Obviously, solutions (S34) and (S35) also satisfy conditions (S27) with positive values of 
constants. These solutions are represented by the ray OSa  in Fig. S2 and by a similar ray (that 

should be denoted as OS ) in the phase portrait of system (S22). c

If tsep << teq, we have from definitions (S33) for   and (S19) for   tsep and teq: 
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In this case, expressions (S33) can be expanded in small parameter tsep/teq. As a result, we obtain 
the following asymptotic relations (to the first order in tsep/teq ): 
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Therefore, a  and c  approach Bk  and k , respectively, if the ratio tsep/teq approaches zero. At 

small values of tsep/teq we obtain: 

sep eq, ( /a cBk k t t 1)     , (S41) 

Relations (S32) – (S35) and (S41) are identical to relations (8) – (14) in the main text. 
Given (S25) and (S26), the following inequalities are fulfilled for the absolute values of 

eigenvalues: 

1, 1a c

a c

 
 



 

   . (S42) 

Therefore, using a general theory of dynamic systems,1,2 we can conclude that all (but two) 
solutions to system (S21) approach the critical point of (S21) in the same direction as the special 
solution (S34) (Fig. S2). Similarly, all (but two) solutions to system (S22) approach the critical 
point of (S22) in the same direction as the special solution (S35). Thus, solutions (S34) and (S35) 
are stable. Actually, the ratios (S37) are significantly larger than unity (for example, they are 
more than 5.83 at Kd = B). Because of this fact, the convergence of other solutions to the special 
solutions (S34) and (S35) occurs relatively quickly (Fig. S2). As a result, special solutions can be 
considered good candidates to describe processes of relaxation of peaks A* and C*. One could 
expect that they describe the relaxation that occurs at the maximum speed and, therefore, takes 
place in reality. 

3. Determination of the rate constants k+ and k– based on the total amounts of the 
mixture of A* and C* in zones A* and C* 
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Taking into account (S34) and (S35), we have: 

   * * * *
1 1 1( ) 1 exp( ), ( ) 1 exp( ),a a a a a a a a c c c c c c c cL t A C N t L t A C N t             1  (S43) 

   * * * *
2 2 2( ) 1 exp( ), ( ) 1 exp( )a a a a a a a a c c c c c c c cL t A C N t L t A C N t            2 . (S44) 

Here and are the total amounts of the label (or the mixture of A* and C*) in zones A* and 

C*, respectively; and are two different times at which is measured; similarly, and 

are two (other) different times at which is measured. It is obvious from relations (S43) and 

(S44) that: 

aL cL

1at 2at aL 1ct

2ct cL

  1 1
2 1 2 1

2 2

( ) ( )
exp ( ) , exp ( )

( ) ( )
a a c c

a a a c c c
a a c c

L t L t
t t t t

L t L t
     . (S45) 

By solving (S45) with respect to a  and c , we obtain the following expressions for them in 

terms of the measurable quantities ( , , , , , ):  aL cL 1at 2at 1ct 2ct

1

2 1 2 2 1 2

( ) ( )1 1
ln , ln

( ) ( )
a a c c

a c
a a a a c c c c

L t L t

t t L t t t L t
  

 
1

. (S46) 

They coincide with relations (17) from the main text. On the other hand, a  and c  can be 

expressed in terms of rate constants, k  and k , using (S33). Remarkably, to determine k  and 

, we actually do not need to solve algebraic equations (S33) containing radicals. The rate 

constants can be easily expressed in terms of 

k

a  and c , using relations (S23) and (S24). The 

latter form a system of liner algebraic equations with respect to k  and k . By adding up (S23) 

and (S24), we obtain an equation that can be readily solved with respect to eq1Bk k   t . As a 

result, 

   
 

2 2
sep

eq sep

31

3
a c a c

a c

t
Bk k

t t

  

  

  
  

 


. (S47) 

Then, by solving (S23) and (S24) with respect to Bk  and k , we finally obtain: 

sep sep2
sep sep

eq eq

1 , 1
3 3a a c

t t
Bk t k t

t t
2
c   

   
           
   

 . (S48) 

Here, eq1 t is presumed to be expressed in terms of a  and c , using (S47). Solutions (S47) and 

(S48) coincide with relations (18) – (20) in the main text. It is obvious from (S46) – (S48) that 
the rate constants are completely determined by 1( ) (a a a aL t L t 2 )  and 1( ) ( )c c c cL t L t 2 , i.e. by the ratios 
of the amounts of the label (or the mixture of A* and C*) measured at two different times in 
zones A* and C*. Total amounts and in (S46) can be replaced by total signals aL cL faL and 
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fcL from zones A* and C*, respectively, as it is explained in the main text. Then ratios 

1 2( ) ( )faL ta fa aL t and 1( ) ( )fc c fc cL t L t 2   can be calculated using the areas of corresponding zones in 

spatial or temporal propagation patterns of the label (or the mixture of A* and C*) (Fig. S1), 
given the following relations between these areas: 
 

1 A 1 1 C 1( , ) ( , ) , ( , ) ( , ) ,
a a c c

a a c c

x t x t

fa a fa fc c fc

x t x t

L x t dx v L x t dt L x t dx v L x t dt

   

   

      (S49) 

 

2 A 2 2 C 2( , ) ( , ) , ( , ) ( , )
a a c c

a a c c

x t x t

fa a fa fc c fc

x t x t

L x t dx v L x t dt L x t dx v L x t dt

   

   

      (S50) 

 
 
Here, and are moments of time in the temporal propagation pattern of zone A* 

corresponding to the boundaries 
at


at


ax and ax  in its spatial propagation pattern.  Similarly, ct
 and 

are moments of time in the temporal propagation pattern of zone C* corresponding to the 

boundaries 
ct


cx and cx  in its spatial propagation pattern.  Obviously, at ta
   and  t  since 

right boundaries 
c t  c



ax and cx reach the detector earlier than corresponding left boundaries ax and cx . 

The ab e considerations are based on definitions of the right and left boundaries ( aov x and cx )

zones A* and C*, respectively, that lead to relations (S20). These “inner” boundaries of zo
A* and C* could be defined in some other way, for example, as coordinates of the local 
minimums in the concentration of the label (or the mixture of A* and C*) (Fig. S1). These 
minimums can be found at the flanks of the “bridge” connecting zones A* and C*. Let us assume
that widths Wa and Wc of such redefined zones A* and C* remain approximately constant with 
time but differ significantly from W. Then, the above results will remain valid after the following 
modification. If Wa Wc one should just use Wa or Wc (instead of W ) in definition (S19) for tsep. 
In more general case, when aW  and cW vary considerably, different separation times: 

 for 

s ne

 

C A C A

,a c
a c

W W
t t

v v v v
 

 
 (S51) 

should be used in zones A* and C*, respectively. Thus, all above results related to zone A* will 

 

d 

hold true if tsep is replaced with ta in the corresponding equations. Similarly, results related to 
zone C* will hold true if tsep is replaced with tc. However, expressions (S47) and (S48) for the 
rate constants cannot be modified in such a way. Indeed, to derive (S47) and (S48), we used the
fact that both (S23) and (S24) contain the same parameter sept . It should be replaced with at  (in 

equation (S23) or with ct  (in equation (S24)), if the widths a and Wc of zones A* and C* are 

different. After such a modification of equations (S23) and (S24), their solutions cannot be foun
by the simple way described. Instead, one should apply Cramer’s rule.3 As a result, expressions 
for 

W

Bk and k  become more cumbersome. Moreover, this procedure requires complex 

processing of experimental data to identify boundaries of zones A* and C*. 
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