Electronic Supporting Information (ESI)

Figure S1a ¹HNMR spectra of **HL** in DMSO- d_6 . Figure S1b Expansion of the aliphatic region of the ¹HNMR of **HL**. Expansion of the aromatic region of the ¹HNMR of **HL**. Figure S1c 13 C NMR spectra of **HL** in DMSO-d₆. Figure S2a Expansion of the aromatic region of the ¹³C NMR of **HL**. Figure S2b QTOF $-MS ES^+$ spectra of HL. Figure S3 FTIR spectra of **HL** (black) and its Al^{3+} complex (red). Figure S4 ¹HNMR spectra of the L-Al³⁺complex in CDCl₃. Figure S5 QTOF $-MS ES^+$ spectra of L-Al³⁺complex. Figure S6 Experimental UV-vis spectra of **HL** (red) and its Al^{3+} complex (black). Figure S7 Job's plot for the determination of stoichiometry of the Al^{3+} complex. Figure S8 Figure S9 Theoretical IR spectrum of HL generated from IR frequency calculation. Figure S10 Theoretical IR spectrum of the Al³⁺ complex generated from IR-frequency calculation. Figure S11 Theoretical UV-vis spectrum of HL generated from TD-DFT calculation. Theoretical UV-vis spectrum of the Al³⁺ complex generated from TD-DFT Figure S12 calculation (Solvent, methanol).

Figure S12b	Theoretical UV-vis spectrum of the Al ³⁺ complex generated from TD-DFT
	calculation (Gas Phase).
Figure S13a, b, c	Theoretical NMR spectrum of HL generated using GIAO (S13a), CSGT (S13b),
	IGAIM (S13c) method in gas phase.
Figure S14a, b, c	Theoretical NMR spectrum of the Al ³⁺ complex generated using GIAO (S13a),
	CSGT (S13b), IGAIM (S13c) method in gas phase.
Table S1	Charges on atom of HL calculated using Natural Population Analysis
	(NPA).
Table S2	Charges on atom of Al ³⁺ complex calculated using NPA.
Table S3	Details of the contributions of orbital transitions for some electronic transitions
	with large oscillator strengths for HL obtained from TDDFT calculation.
Table S4	Details of the contributions of orbital transitions for some electronic transitions
	with large oscillator strengths for Al^{3+} complex obtained from TDDFT
	calculation
Table S5 Fronti	er molecular orbitals involving main transitions in HL and its Al ³⁺ -complex.
Table S6	Comparison of TDDFT results obtained in gas phase and methanol for the Al^{3+}
	complex

Quantum Yield Calculation

Theoretical results for \mathbf{HL} using LANL2DZ basis set

Figure S1c

Figure S2a

Figure S2b

Figure S3

Figure S4

Figure S5

Figure S6

Figure S7

Figure S8

Figure S9

Figure S10

Figure S11

Figure S12b

Figure S13b

Figure S14a

Figure S14b

Table S1

Ato	m N	o Charge	e Core	Valence	e Rydbei	rg Total
C	1	-0 23615	1 99915	4 22077	0.01623	6 23615
	· 2	-0 20582	1 99910	4 19154	0.01519	6 20582
	3	-0.06833	1 99908	4 05302	0.01674	6.06833
(4	-0.06291	1 99904	4 04817	0.01021	6.06291
(5	-0 20701	1 99910	4 19260	0.01531	6 20701
(6	-0 23638	1 99915	4 22103	0.01619	6 23638
F	1 7	0 23569	0 00000	0 76252	0.00179	0 76431
F	I 8	0.23895	0.00000	0.75959	0.00146	0.76105
F	I 9	0.23663	0.00000	0.76172	0.00165	0.76337
С	10	-0.17294	1.99868	4.15669	0.01756	6.17294
С	11	-0.20180	1.99911	4.18696	0.01573	6.20180
Н	12	0.23623	0.00000	0.76204	0.00173	0.76377
Н	13	0.23883	0.00000	0.75969	0.00147	0.76117
С	14	-0.22037	1.99907	4.20539	0.01591	6.22037
С	15	-0.06697	1.99910	4.04992	0.01795	6.06697
Н	16	0.23694	0.00000	0.76129	0.00177	0.76306
Н	17	0.24142	0.00000	0.75672	0.00186	0.75858
С	18	-0.57471	1.99925	4.56158	0.01387	6.57471
Н	19	0.24161	0.00000	0.75592	0.00247	0.75839
Н	20	0.24514	0.00000	0.75280	0.00207	0.75486
S	21	0.19831	9.99932	5.76578	0.03659	15.80169
C	22	-0.60154	1.99932	4.58774	0.01449	6.60154
Н	23	0.24631	0.00000	0.75142	0.00227	0.75369
Н	24	0.23934	0.00000	0.75862	0.00204	0.76066
C	25	-0.10435	1.99925	4.08718	0.01792	6.10435
Н	26	0.20378	0.00000	0.79389	0.00233	0.79622
Н	27	0.19980	0.00000	0.79791	0.00229	0.80020
О	28	-0.77346	1.99982	6.75590	0.01773	8.77346
H =====		0.49375	0.00000	0.50195	0.00430	0.50625
* Tota	al *	0.00001	37.98755	77.72035	0.29210	115.99999

Table S2

Ato	m I	No	Charg	e Core	Valenc	e Rydbe	erg Total
Al	1	2.	11620	10.00000	0.87653	0.00727	10.88380
0	2	-1.	07800	1.99984	7.07395	0.00420	9.07800
Н	3	0.	53890	0.00000	0.45702	0.00408	0.46110
0	4	-0.	86941	1.99985	6.86065	0.00891	8.86941
Н	5	0.	55124	0.00000	0.44488	0.00387	0.44876
0	6	-0.	89965	1.99983	6.89311	0.00671	8.89965
Н	7	0.	53355	0.00000	0.46139	0.00506	0.46645
0	8	-1.	04940	1.99986	7.04060	0.00894	9.04940
С	9	-0.	03556	1.99916	4.02074	0.01567	6.03556
Н	10	0	.19691	0.00000	0.80056	0.00253	0.80309
Н	11	0	.18002	0.00000	0.81724	0.00274	0.81998
С	12	-0	.52070	1.99927	4.51071	0.01072	6.52070
Н	13	0	.24682	0.00000	0.75108	0.00210	0.75318
Н	14	0	.22815	0.00000	0.76980	0.00206	0.77185
S	15	0.	08018	10.00000	5.91066	0.00916	15.91982
С	16	-0	.50169	1.99916	4.48825	0.01429	6.50169
Н	17	0	.24822	0.00000	0.74937	0.00241	0.75178
Н	18	0	.23488	0.00000	0.76299	0.00213	0.76512
С	19	-0	.04050	1.99903	4.02074	0.02073	6.04050
С	20	-0	.18935	1.99897	4.17356	0.01682	6.18935
С	21	-0	.20625	1.99906	4.19184	0.01535	6.20625
С	22	-0	.04813	1.99897	4.02920	0.01996	6.04813
Н	23	0	.21931	0.00000	0.77916	0.00153	0.78069
С	24	-0	.18455	1.99908	4.17087	0.01461	6.18455
Н	25	0	.23163	0.00000	0.76664	0.00173	0.76837
С	26	-0	.05354	1.99897	4.03488	0.01968	6.05354
С	27	-0	.19208	1.99908	4.17847	0.01454	6.19208
Н	28	0	.21894	0.00000	0.77983	0.00123	0.78106
С	29	-0	.19393	1.99908	4.18011	0.01474	6.19393
С	30	-0	.21274	1.99916	4.19963	0.01395	6.21274
Н	31	0	.21650	0.00000	0.78236	0.00114	0.78350
С	32	-0	.21202	1.99916	4.19888	0.01398	6.21202
Н	33	0	.21675	0.00000	0.78209	0.00116	0.78325
Н	34	0	.21968	0.00000	0.77941	0.00091	0.78032
Н	35	0	.21951	0.00000	0.77957	0.00092	0.78049
С	36	-0	.05511	1.99916	4.04185	0.01410	6.05511
Н	37	0	.22249	0.00000	0.77531	0.00220	0.77751
Н	38	0	.22812	0.00000	0.77004	0.00184	0.77188
С	39	-0	.53746	1.99928	4.52624	0.01194	6.53746

* Tota	1*	0.00000	107.97353	225.38586	0.64061	334.00000
0	75	-0.63020	1.99986	6.61932	0.01102	8.63020
0	74	-0.35485	1.99988	6.34555	0.00942	8.35485
0	73	-0.48613	1.99989	6.47778	0.00846	8.48613
Ν	72	0.71336	1.99967	4.26235	0.02462	6.28664
0	71	-0.66761	1.99985	6.65701	0.01074	8.66761
0	70	-0.33003	1.99988	6.32099	0.00915	8.33003
0	69	-0.48330	1.99988	6.47522	0.00820	8.48330
Ν	68	0.71127	1.99967	4.26348	0.02558	6.28873
Н	67	0.52004	0.00000	0.47516	0.00480	0.47996
Н	66	0.21005	0.00000	0.78860	0.00134	0.78995
Н	65	0.21776	0.00000	0.78098	0.00125	0.78224
Н	64	0.20655	0.00000	0.79271	0.00074	0.79345
С	63	-0.25085	1.99927	4.24460	0.00698	6.25085
Н	62	0.22124	0.00000	0.77785	0.00092	0.77876
Н	61	0.22133	0.00000	0.77776	0.00091	0.77867
Н	60	0.21762	0.00000	0.78122	0.00116	0.78238
С	59	-0.20833	1.99916	4.19524	0.01392	6.20833
Н	58	0.21739	0.00000	0.78147	0.00113	0.78261
С	57	-0.20942	1.99916	4.19637	0.01389	6.20942
С	56	-0.19318	1.99908	4.17939	0.01471	6.19318
Н	55	0.21839	0.00000	0.78037	0.00124	0.78161
C	54	-0.19116	1.99908	4.17759	0.01448	6.19116
C	53	-0.05190	1.99897	4.03319	0.01975	6.05190
H	52	0.21808	0.00000	0.78026	0.00165	0.78192
C	51	-0.18164	1.99907	4.16802	0.01454	6.18164
H	50	0.21704	0.00000	0.78154	0.00143	0.78296
Č	49	-0.04712	1.99897	4.02821	0.01994	6.04712
C	48	-0.20648	1.99906	4.19187	0.01555	6.20648
C	47	-0.18488	1.99897	4.16931	0.01661	6.18488
C	46	-0.04290	1.99903	4.02290	0.02097	6.04290
Н	45	0.23759	0.00000	0.76021	0.00220	0.76241
H	44	0.23759	0.00000	0.76060	0.00181	0.76241
C	43	-0 49811	1 99917	4 48553	0.01342	6 49811
S	42	0.08268	10 00000	5 90884	0.00237	15 91732
H	41	0.23316	0.00000	0 76445	0.00239	0 76684
н	40	0 24899	0 00000	0 74969	0.00132	0 75101

Table S3. TDDFT results of HL in methanol.

Excited State 1:	Percentage(%)	Excitation energy(nm)	Oscillator strength(f)
HOMO-2 →LUMO	2.6	293.18	0.0428
HOMO-2 →LUMO+1	2.4		
HOMO-1 →LUMO	26.5		
HOMO →LUMO	61.5		
HOMO →LUMO	7.0		
Excited State 2:	Percentage(%)	Excitation energy(nm)	Oscillator strength(f)
HOMO-2 →LUMO	40.0	230.66 1	.2766
HOMO-1 →LUMO+1	2.0		
HOMO-1 →LUMO+3	11.0		
HOMO →LUMO+1	35.0		
HOMO →LUMO+2	6.0		
HOMO-2 →LUMO+4	6.0		

HOMO-2 \rightarrow LUMO100410.420.0042Excited State 2:Percentage(%)Excitation energy(nm)Oscillator strength(strength)HOMO-7 \rightarrow LUMO+14.2352.830.0019HOMO-6 \rightarrow LUMO+126.6	Excited State 1:	Percentage(%)	Excitation energy(nm)	Oscillator strength(f)
Excited State 2:Percentage(%)Excitation energy(nm)Oscillator strength(1) $HOMO-7 \rightarrow LUMO+1$ 4.2 352.83 0.0019 $HOMO-6 \rightarrow LUMO+1$ 26.6 $1000-4 \rightarrow LUMO+1$ 68.2Excited State 3:Percentage(%)Excitation energy(nm)Oscillator strength(1) $HOMO-6 \rightarrow LUMO+1$ 74.6 348.85 0.0010 $HOMO-4 \rightarrow LUMO+1$ 25.4Excitation energy(nm)Oscillator strength(1) $HOMO-7 \rightarrow LUMO$ 95.0 345.91 0.0020 $HOMO-6 \rightarrow LUMO$ 5.0Excitation energy(nm)Oscillator strength(1) $HOMO-6 \rightarrow LUMO$ 5.0Excitation energy(nm)Oscillator strength(1) $HOMO-13 \rightarrow LUMO+1$ 5.9 326.62 0.0011 $HOMO-12 \rightarrow LUMO+1$ 23.8 23.8 23.8	HOMO-2 →LUMO	100	410.42	0.0042
HOMO-7 \rightarrow LUMO+14.2352.830.0019HOMO-6 \rightarrow LUMO+126.61000-4 \rightarrow LUMO+168.2Excited State 3:Percentage(%)Excitation energy(nm)Oscillator strength(f)HOMO-6 \rightarrow LUMO+174.6348.850.0010HOMO-4 \rightarrow LUMO+125.425.4Excited State 4:Percentage(%)Excitation energy(nm)Oscillator strength(f)HOMO-7 \rightarrow LUMO95.0345.910.0020HOMO-6 \rightarrow LUMO5.05.020.0011Excited State 5:Percentage(%)Excitation energy(nm)Oscillator strength(f)HOMO-13 \rightarrow LUMO+15.9326.620.0011HOMO-12 \rightarrow LUMO+123.823.80.0011	Excited State 2:	Percentage(%)	Excitation energy(nr	m) Oscillator strength(f)
HOMO-6 \rightarrow LUMO+126.6HOMO-4 \rightarrow LUMO+168.2Excited State 3:Percentage(%)Excitation energy(nm)Oscillator strength(s)HOMO-6 \rightarrow LUMO+174.6348.850.0010HOMO-4 \rightarrow LUMO+125.4Excitation energy(nm)Oscillator strength(f)HOMO-7 \rightarrow LUMO95.0345.910.0020HOMO-6 \rightarrow LUMO5.0Excitation energy(nm)Oscillator strength(f)HOMO-6 \rightarrow LUMO5.0Excitation energy(nm)Oscillator strength(f)HOMO-13 \rightarrow LUMO+15.9326.620.0011HOMO-12 \rightarrow LUMO+123.823.810.0020	HOMO-7 \rightarrow LUMO+1	4.2	352.83	0.0019
HOMO-4 \rightarrow LUMO+168.2Excited State 3:Percentage(%)Excitation energy(nm)Oscillator strength(s)HOMO-6 \rightarrow LUMO+174.6348.850.0010HOMO-4 \rightarrow LUMO+125.4Excitation energy(nm)Oscillator strength(f)HOMO-7 \rightarrow LUMO95.0345.910.0020HOMO-6 \rightarrow LUMO5.0Excitation energy(nm)Oscillator strength(f)HOMO-6 \rightarrow LUMO5.0Excitation energy(nm)Oscillator strength(f)HOMO-13 \rightarrow LUMO+15.9326.620.0011HOMO-12 \rightarrow LUMO+123.823.810.0020	HOMO-6 →LUMO+1	26.6		
Excited State 3:Percentage(%)Excitation energy(nm)Oscillator strength(f)HOMO-6 \rightarrow LUMO+174.6348.850.0010HOMO-4 \rightarrow LUMO+125.4Excitation energy(nm)Oscillator strength(f)Excited State 4:Percentage(%)Excitation energy(nm)Oscillator strength(f)HOMO-7 \rightarrow LUMO95.0345.910.0020HOMO-6 \rightarrow LUMO5.0Excitation energy(nm)Oscillator strength(f)HOMO-13 \rightarrow LUMO+15.9326.620.0011HOMO-12 \rightarrow LUMO+123.823.810.0020	HOMO-4 \rightarrow LUMO+1	68.2		
HOMO-6 \rightarrow LUMO+174.6348.850.0010HOMO-4 \rightarrow LUMO+125.4Excited State 4: Percentage(%)Excitation energy(nm)Oscillator strength(f)HOMO-7 \rightarrow LUMO95.0345.910.0020HOMO-6 \rightarrow LUMO5.0Excitation energy(nm)Oscillator strength(f)Excited State 5:Percentage(%)Excitation energy(nm)Oscillator strength(f)HOMO-13 \rightarrow LUMO+15.9326.620.0011HOMO-12 \rightarrow LUMO+123.8Excitation energy(nm)Scillator strength(f)	Excited State 3:	Percentage(%)	Excitation energy(nr	m) Oscillator strength(f)
HOMO-4 \rightarrow LUMO+125.4Excited State 4:Percentage(%)Excitation energy(nm)Oscillator strength(f)HOMO-7 \rightarrow LUMO95.0345.910.0020HOMO-6 \rightarrow LUMO5.0Excitation energy(nm)Oscillator strength(f)Excited State 5:Percentage(%)Excitation energy(nm)Oscillator strength(f)HOMO-13 \rightarrow LUMO+15.9326.620.0011HOMO-12 \rightarrow LUMO+123.823.823.8	HOMO-6 \rightarrow LUMO+1	74.6	348.85	0.0010
Excited State 4:Percentage(%)Excitation energy(nm)Oscillator strength(f) $HOMO-7 \rightarrow LUMO$ 95.0345.910.0020 $HOMO-6 \rightarrow LUMO$ 5.0	HOMO-4 \rightarrow LUMO+	1 25.4		
HOMO-7 \rightarrow LUMO95.0345.910.0020HOMO-6 \rightarrow LUMO5.0Excited State 5:Percentage(%)Excitation energy(nm)Oscillator strength(f)HOMO-13 \rightarrow LUMO+15.9326.620.0011HOMO-12 \rightarrow LUMO+123.8	Excited State 4: I	Percentage(%)	Excitation energy(nm)	Oscillator strength(f)
HOMO-6 \rightarrow LUMO5.0Excited State 5:Percentage(%)Excitation energy(nm)Oscillator strength(f)HOMO-13 \rightarrow LUMO+15.9326.620.0011HOMO-12 \rightarrow LUMO+123.8	HOMO-7 \rightarrow LUMO	95.0	345.91	0.0020
Excited State 5:Percentage(%)Excitation energy(nm)Oscillator strength(f)HOMO-13 \rightarrow LUMO+15.9326.620.0011HOMO-12 \rightarrow LUMO+123.8	HOMO-6 \rightarrow LUMO	5.0		
HOMO-13 \rightarrow LUMO+1 5.9 326.62 0.0011 HOMO-12 \rightarrow LUMO+1 23.8	Excited State 5:	Percentage(%)	Excitation energy(nm)	Oscillator strength(f)
HOMO-12 \longrightarrow LUMO+1 23.8	HOMO-13 \rightarrow LUMO+	-1 5.9	326.62	0.0011
	HOMO-12 \rightarrow LUMO+	-1 23.8		

Table S4. TDDFT of Al³⁺ complex in methanol.

HOMO-11 \rightarrow LUMO+1 9.9

	HOMO-10 -	\rightarrow LUMO	2.5
--	-----------	--------------------	-----

- HOMO-10 \rightarrow LUMO+1 49.8
- HOMO-7 \rightarrow LUMO+1 8.1

Excited State	6:	Percentage(%)	Excitation energy(nm)	Oscillator strength(f)

- $HOMO-4 \longrightarrow LUMO+5 \quad 4.8 \qquad 293.37 \qquad 0.0728$
- HOMO \rightarrow LUMO+3 95.2
- Excited State 7: Percentage(%) Excitation energy(nm) Oscillator strength(f) HOMO-4 \rightarrow LUMO+3 48.5 285.32 0.0025
 - HOMO \rightarrow LUMO+3 2.5
 - HOMO \rightarrow LUMO+5 49.0
- Excited State 8:Percentage(%)Excitation energy(nm)Oscillator strength(f)
 - $HOMO-5 \longrightarrow LUMO+2 \qquad 35.4 \qquad 266.72 \qquad 0.0418$
 - HOMO-3 \rightarrow LUMO+2 58.3
 - HOMO-3 \rightarrow LUMO+4 2.9
 - HOMO-1 \rightarrow LUMO+4 3.4

Table S5

HOMO-2 (COMPLEX)

HOMO-6 (COMPLEX)

HOMO-4 (COMPLEX)

LUMO+1 (COMPLEX)

LUMO (COMPLEX)

Table S6

	Theoretical, λ /nm (Solvent Methano	l) Theoretical, λ/nm (Gas Phase)
L- Al ³⁺ Complex	410, 352, 348, 345, 293, 285, 266	399, 389, 351, 348, 333, 331,291,282, 267

Calculation of Quantum Yield:

Fluorescence quantum yields (Φ) were estimated by integrating the area under the fluorescence curves using the equation,

$$\phi_{\text{sample}} = \frac{\text{OD}_{\text{standard}} \times A_{\text{sample}}}{\text{OD}_{\text{sample}} \times A_{\text{standard}}} \times \phi_{\text{standard}}$$

where A was the area under the fluorescence spectral curve and OD was optical density of the compound at the excitation wavelength.¹ Anthracene was used as quantum yield standard (quantum yield is 0.27 in ethanol)² for measuring the quantum yields of ligand and its Al³⁺ complex. The calculated quantum yield of ligand is 0.013 and its Al³⁺ is 0.083.

- [1] Austin, E.; Gouterman, M. *Bioinorg. Chem.*, **1978**, *9*, 281.
- [2] Melhuish W. H. J. Phys. Chem., 1961, 65, 229

Computational results for HL using LANL2DZ basis set

Optimized geometry of HL using LANLDZ basis set

Natural Population Analysis

Natural

Ator	m N	No.	Charge	Core	Valence	e Rydberg	Total
 С	1	-0.2	21264	1.99916	4.19954	0.01394	6.21264
С	2	-0.1	.9231	1.99908	4.17875	0.01448	6.19231
С	3	-0.0)4657	1.99897	4.02770	0.01990	6.04657
С	4	-0.0)5436	1.99897	4.03570	0.01969	6.05436
С	5	-0.1	9445	1.99908	4.18068	0.01468	6.19445
С	6	-0.2	21291	1.99916	4.19974	0.01400	6.21291
Н	7	0.2	21591	0.00000	0.78268	0.00141	0.78409
Н	8	0.2	21954	0.00000	0.77955	0.00091	0.78046
Н	9	0.2	21636	0.00000	0.78250	0.00114	0.78364
С	10	-0.	18981	1.99897	4.17435	0.01649	6.18981
С	11	-0.	18556	1.99908	4.17189	0.01459	6.18556
Н	12	0.2	21610	0.00000	0.78273	0.00116	0.78390
Н	13	0.2	21931	0.00000	0.77977	0.00092	0.78069
С	14	-0.2	20867	1.99906	4.19469	0.01493	6.20867
С	15	-0.	03213	1.99904	4.01240	0.02070	6.03213
Н	16	0.2	21709	0.00000	0.78167	0.00124	0.78291
Н	17	0.2	22150	0.00000	0.77724	0.00127	0.77850

С	18	-0.51717	1.99917	4.50484	0.01316	6.51717	
Н	19	0.22773	0.00000	0.77003	0.00224	0.77227	
Н	20	0.23136	0.00000	0.76668	0.00196	0.76864	
S	21	0.11389	10.00000	5.87675	0.00937	15.88611	
С	22	-0.52984	1.99928	4.51725	0.01331	6.52984	
Η	23	0.23695	0.00000	0.76029	0.00276	0.76305	
Η	24	0.22300	0.00000	0.77506	0.00194	0.77700	
С	25	-0.05367	1.99918	4.04241	0.01208	6.05367	
Η	26	0.19092	0.00000	0.80643	0.00265	0.80908	
Η	27	0.18985	0.00000	0.80776	0.00239	0.81015	
0	28	-0.79201	1.99988	6.78288	0.00924	8.79201	
Η	29	0.48259	0.00000	0.51661	0.00080	0.51741	

* Total * 0.00000 37.98808 77.76857 0.24335 116.00000

UV-vis spectrum

IR spectrum

NMR spectrum

