Supplementary Information

Direct Analysis of Steviol Glycosides from Stevia Leaves by Ambient Ionization Mass Spectrometry from Whole Leaf

J. Isabella Zhang,^{§a} Xin Li,^{§a} Zheng Ouyang^b, R. Graham Cooks^{*a}

^a Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA

^b Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA

[§]These authors contributed equally to this work.

**Correspondence to:* Dr. R. Graham Cooks, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA. Phone: 765-494-5262. Fax: 765-494-9421. E-mail: <u>cooks@purdue.edu</u>.

Supplementary Data:

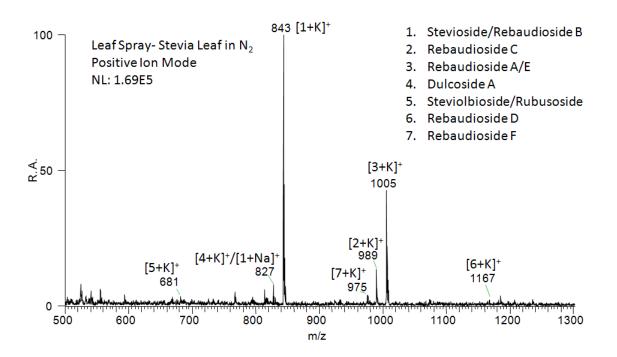

Figure S-1 Positive ion mode leaf spray mass spectrum of fresh *Stevia* leaf recorded under nitrogen to avoid the oxygen in the air. No oxidation products of *Stevia* glycosides are observed from full scan mass spectrum.

Figure S-2 a) Positive ion mode LTP mass spectrum for fresh untreated *Stevia* leaf. No *Stevia* glycosides are observed directly from full scan mass spectrum. b) Positive ion mode paper spray mass spectrum for a piece of *Stevia* leaf on paper.

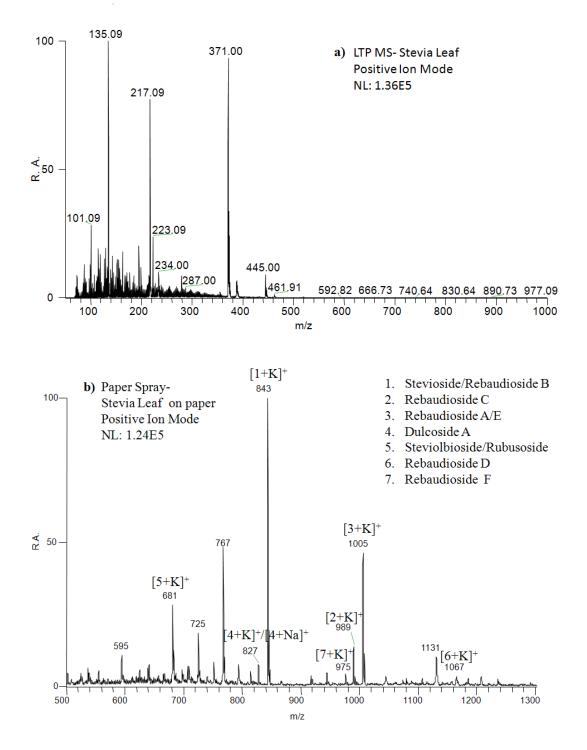
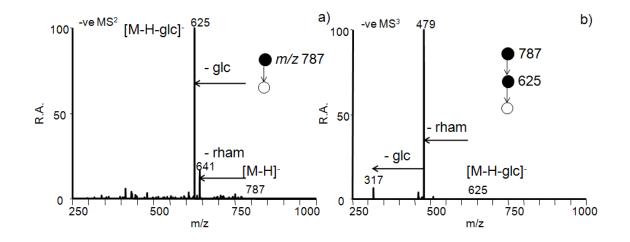
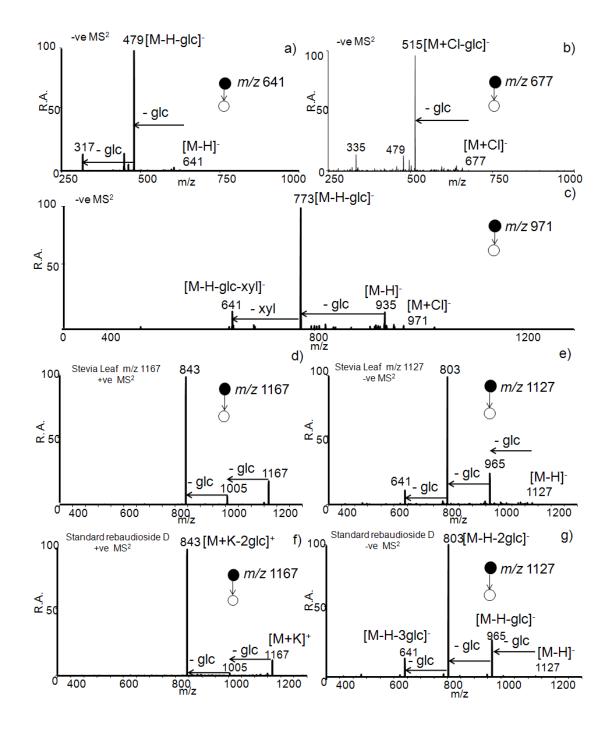

Figure S-3 a) MS² and b) MS³ spectra of 787 [M-H]⁻, M represents dulcoside A, which is not observed directly in the negative ion mode full scan leaf spray mass spectrum of fresh *Stevia* leaves.

Figure S-4 Leaf spray tandem mass spectra of fresh *Stevia* leaves to verify the presence of *Stevia* glycosides which are not observed directly from full scan mass spectrum. a) MS^2 of m/z 641 [M-H]⁻, in the negative ion mode, M represents steviolbioside/rubusoside (isomers), b) MS^2 of 677 [M+Cl]⁻, in the negative ion mode, M represents steviolbioside/rubusoside (isomers), c) MS^2 of 971 [M+Cl]⁻, in the negative ion mode, M represents rebaudioside F, d) MS^2 of m/z 1167, in the positive ion mode, e) MS^2 of m/z 1127, in the negative ion mode. Paper spray tandem mass spectra of rebaudioside D standard, f) MS^2 of 1167 [M+K]⁺, in the positive ion mode, g) MS^2 of 1127 [M-H]⁻, in the negative ion mode, M represents rebaudioside D.


Figure S-5 Positive ion mode leaf spray mass spectra of *Stevia* leaf in different conditions, a) dehydrated *Stevia* Leaf and b) stalk of *Stevia* Leaf.


Figure S-1 Positive ion mode leaf spray mass spectrum of fresh *Stevia* leaf recorded under nitrogen to avoid the oxygen in the air. No oxidation products of *Stevia* glycosides are observed from full scan mass spectrum.

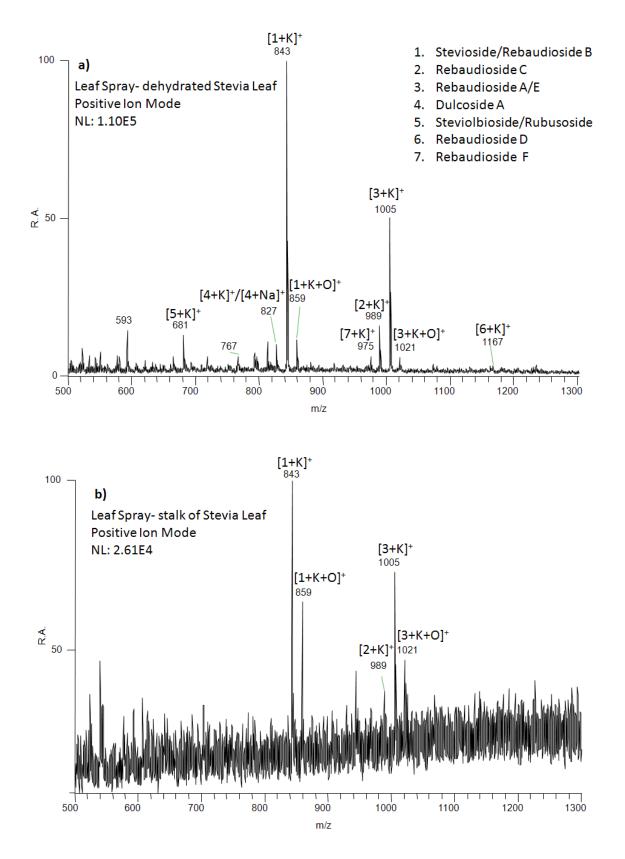

Figure S-2 a) Positive ion mode LTP mass spectrum for fresh untreated *Stevia* leaf. No *Stevia* glycosides are observed directly from full scan mass spectrum. b) Positive ion mode paper spray mass spectrum for a piece of *Stevia* leaf on paper.

Figure S-3 a) MS² and b) MS³ spectra of 787 [M-H]⁻, M represents dulcoside A, which is not observed directly in the negative ion mode full scan leaf spray mass spectrum of fresh *Stevia* leaves.

Figure S-4 Leaf spray tandem mass spectra of fresh *Stevia* leaves to verify the presence of *Stevia* glycosides which are not observed directly from full scan mass spectrum. a) MS^2 of m/z 641 [M-H]⁻, in the negative ion mode, M represents steviolbioside/rubusoside (isomers), b) MS^2 of 677 [M+Cl]⁻, in the negative ion mode, M represents steviolbioside/rubusoside (isomers), c) MS^2 of 971 [M+Cl]⁻, in the negative ion mode, M represents rebaudioside F, d) MS^2 of m/z 1167, in the positive ion mode, e) MS^2 of m/z1127, in the negative ion mode. Paper spray tandem mass spectra of rebaudioside D standard, f) MS^2 of 1167 [M+K]⁺, in the positive ion mode, g) MS^2 of 1127 [M-H]⁻, in the negative ion mode, M represents rebaudioside D.

Figure S-5 Positive ion mode leaf spray mass spectra of Stevia leaf in different conditions, a) dehydrated Stevia Leaf and b) stalk of Stevia Leaf.