Electrochemical investigations into Tau protein phosphorylations

Sanela Martić, Samaneh Beheshti, Meghan K. Rains and Heinz-Bernhard Kraatz*

Department of Physical and Environmental Sciences, University of Toronto at Scarborough, Toronto, Ontario, M1C 1A4, Canada

Supporting Information

Fig. S1. Faradaic impedance spectra of a) bare gold electrode, b) Lip-NHS, c) Taumodified gold electrode and d) ethanolamine blocking. The inset I shows bare gold electrode and the inset II depicts the equivalent circuit applied to fit all the data. The experimental data are represented by symbols, the fitting is a solid line, R_S , solution resistance, CPE constant phase element, R_{CT} charge transfer resistance, and Z_W is the finite length Warburg impedance. Measurements were done in 5 mM K₄[Fe(CN)₆]·3H₂O and K₃[Fe(CN)₆]·3H₂O in 0.1 M sodium phosphate buffer (pH 7.4).

Fig. S2. A) Cyclic voltammograms as a function of scan rate for Fc-phosphorylated Taumodified gold electrode. B) Plot of anodic and cathodic current densities as a function of scan rate (GSK-3 β catalyzed Fc-phosphorylation, Ag/AgCl as reference electrode, Pt wire as auxiliary electrode, 0.1 M sodium phosphate buffer pH 7.4).

Fig. S3. A) Cyclic voltammograms as a function of scan rate for Fc-phosphorylated Taumodified gold electrode. B) Plot of anodic and cathodic current densities as a function of scan rate (Src catalyzed Fc-phosphorylation, Ag/AgCl as reference electrode, Pt wire as auxiliary electrode, 0.1 M sodium phosphate buffer pH 7.4).

Fig. S4. (a) Cyclic voltammograms as a function of scan rate for Fc-phosphorylated Taumodified gold electrode. (b) Plot of anodic and cathodic current densities as a function of scan rate (PKA catalyzed Fc-phosphorylation, Ag/AgCl as reference electrode, Pt wire as auxiliary electrode, 0.1 M sodium phosphate buffer pH 7.4).

Fig. S5. A) Background-subtracted square-wave voltammograms and B) plot of the steady-state current density as a function of reaction time (a to e: 10, 20, 30, 60 and 120 min) for Tau-modified gold electrode in the presence of protein kinase ($0.5 \ \mu g \ mL^{-1}$) and Fc-ATP (200 μ M). Ag/AgCl as reference electrode, Pt wire as auxiliary electrode, 0.1 M sodium phosphate buffer pH 7.4.

Fig. S6. Square-wave voltammograms of Tau-modified gold electrodes after Fcphosphorylation reactions in the presence of A) Fc-ATP (200 μ M) and variable PKA concentrations; PKA concentrations from a to h are 0, 0.01, 0.08, 0.3, 0.8 and 1 μ g mL⁻¹. B) PKA (0.5 μ g mL⁻¹) and variable Fc-ATP concentrations; Fc-ATP concentrations from a to h are 0, 3, 5, 50, 75, 166, 250 and 416 μ M. C) Fc-ATP (200 μ M) and variable Src concentrations; Src concentrations from a to f are 0.01, 0.05, 0.1, 0.2, 0.5 and 1 μ g mL⁻¹. D) Src (0.5 μ g mL⁻¹) and variable Fc-ATP concentrations. Fc-ATP concentrations from a to f are 0, 5, 25, 43, 83 and 250 μ M.

Fig. S7. Representative Laviron plot (log v versus E_p) of the immobilized Tau film on Au surface following the Fc-phosphorylation with Fc-ATP and Src.