SUPPORTING INFORMATION

Quantitative solid-state Raman spectroscopic method for control of fungicides

⁵ Figure S1. Crystal structures, hydrogen bonding and unit cell content of the acidic form of EE, and esters of EZ, ZE and ZZ, respectively [4c-f].

Figure S2. Chemical diagrams, parallel (p)/perpendicular (s) (acids) and subtracted (esters) solid-state Raman spectra of the four conformers EE, EZ, ZE and ZZ as acids and esters within 3500–40 cm⁻¹, tebuconazole (1), and propiconazole (2), respectively.

Figure S3. Experimental solid-state Raman spectra of acids (a) and esters (b) of EE, EZ, ZE and ZZ conformars within 250–30 cm⁻¹ regions of the electromagnetic spectrum.

Electronic Supplementary Material (ESI) for Analyst This journal is © The Royal Society of Chemistry 2012

Table S1. Theoretical (M06-2X/ aug-cc-pVDZ) and experimental solid-state Raman spectra of the acids and esters of EE, EZ, ZE and ZZ, respectively; The frequencies are given in $v [cm^{-1} (THz)]$.

Assignment	ment EE				\mathbf{EZ}			ZE				ZZ				
	Acids		Acids Esters		Acids		I	Esters		Acids		Esters		Acids		ters
	Exp.	Theor.	Exp.	Theor.	Exp.	Theor.	Exp.	Theor.	Exp.	Theor.	Exp.		Exp.	Theor.	Exp.	Theor.
H-bond defformatio	299 (8.97)	307 (9.21)	_		296 (8.88)	311 (9.33)	-		302 (9.06)	310 (9.30)	-		305 (9.15)	317 (9.51)	-	
ns																
v^{as} CC13	263 (7.89)	263 (7.89)									239 (7.17)	244 (7.32)			240 (7.20)	248 (7.44)
											231 (6.93)	237 (7.11)			238 (7.14)	244 (7.32)
$\rho(\text{CCl}_3)$									219 (6.57)	220 (6.6)						
Уоснз					206 (6.18)	205 (6.17)									200 (6)	200 (6)
	195 (2.88)	195 (2.88)									194 (5.82)	195 (2.88)			188 (5.64)	188 (5.64)
Skeletal	· · · ·		177 (5.31)				174 (5.22)	177 (5.31)	173 (5.19)	174 (5.22)						
modes	165 (4.95)	164 (4.92)	162 (4.86)	163(4.89)	164 (4.89)		· · · ·	. ,	· · · ·	· · · ·	168 (5.04)	166 (4.96)	180 (5.40)	180 (5.40)		
	· · · ·	· · /	× /	. ,	· · · ·		153 (4.59)	155 (4.65)			150 (4.50)	150 (4.50)				
	143 (4.29)	143 (4.29)	133 (3.99)	132 (3.96)	144 (4.32)		138 (4.14)	140 (4.20)	137 (4.11)	135 (4.05)	137 (4.11)	138 (4.14)	138 (4.14)	140 (4.2)	142 (4.26)	141 (4.25)
	1.0 (110(112))	100 (0055)	102 (000)	122 (3.66)		100 (1111)	1.0 (100 (1100)	126 (3.78)	125 (3.75)	100 (111)	1.0 ()	130 (3.9)	130 (3.9)
	109 (3 27)	109 (3 27)	100 (3)	100 (3)	(0100)		100 (3)	100 (3)			107 (5 1)	104(312)			106(3.18)	106(3.17)
T	91 (2.73)	90(27)	82 (2.46)	100 (0)	94 (2.82)		100 (0)	100 (0)	87 (2.61)	88 (2.64)	107 (011)	101 (3.12)			78 (2 34)	78 (2 34)
torsion of)I (2 .70)	90 (2.7)	62(1.86)	61 (1.86)) (2.02)		68 (2.04)	66 (1.08)	07 (2.01)	00 (2.01)	68 (2.04)	66(1.08)			/0 (2.51)	70 (2.51)
antina sida			56(1.60)	55(1.67)			00 (2.04)	00 (1.98)			(2.04)	60(1.98)				
chain shout			30 (1.08)	33(1.07)							01 (1.80)	00 (1.8)			40 (1.47)	50 (1 49)
chain about			45 (1.25)	45 (1.25)			4((1.20)	44 (1.20)			41 (1.02)	40(1.22)			49 (1.47)	50 (1.48)
the aromatic			45 (1.35)	45 (1.35)			40 (1.38)	44 (1.32)			41 (1.23)	40(1.22)			44 (1.32)	45 (1.35)
system																

5

Table S2. Hydrogen bonds and short contacts [Å], observed in the crystals of EE, EZ, ZE, and ZZ respectively [4].

	EE		EZ		Z	ĽΕ	ZZ		
	Exp.	Theor.	Exp.	Theor.	Exp.	Theor.	Exp.	Theor.	
OH N	2.761	2.700							
CH Cl	2.661	2.660	2.492	2.990			2.657	2.659	
	2.645	2.658	2.359	2.350			2.632	2.634	
			2.532	2.530					
Cl Cl	2.830	2.830	2.395	2.394	2.798	2.798			

(c)

(d)

Figure S4. Experimental solid-state Raman spectra within 250–50 cm⁻¹ region of acids (a), esters (b), (1) (c) and mixture of (2) with EZ at molar ratio 1:8 (d), procedured with the baseline method; and non-linear curve-fitted pattern after the applied deconvolution method; non-linear multipeak Gaussian:Lorenzian mixed function 1:1 is uzed; *A*- total area under the curve from the baseline centre of the peak; w^2 "sigma", approximately 0.876 – 0.942 the FWHM; w/2 - is the standard deviation; The corresponding r^2 (χ^2 /DaF) statistical values; The obtained quantities by the applied non-linear mathematical and statistical approaches were shown in (d), s respectively. The data summarized in the (d) corresponded to three repeated measurements.

Table S3. Peak positions ni depending of the applied non-linear methods and smoothing procedures, using the SG and FFT as methods at different polynomial order (PO) and number of points (NP), respectively; In the SG method the number of points left/rigth is 16/16, respectively; The obtained data are after the three repeated measurements.

	1	LE		EZ								
Acids												
FFT,	FFT,	SG,	SG,	FFT,	FFT,	SG,	SG,					
NP=3	NP = 5	PO = 2	PO = 4	NP=3	NP = 5	PO = 2	PO = 4					
299±0.011	$298\pm0.01_2$	$299 \pm 0.04_4$	297±0.011	$296 \pm 0.73_1$	$295{\pm}0.88_7$	296±0.103	296±0.198					
263±0.016	$263\pm0.02_{2}$	$263 \pm 0.02_0$	$261{\pm}~0.05_{5}$	$206\pm0.05_5$	$205\pm0.03_9$	$204\pm0.01_2$	$205\pm0.55_8$					
$195\pm0.00_3$	$196 \pm 0.01_3$	$195\pm0.07_7$	$197{\pm}~0.09_3$	$164\pm0.09_2$	$163\pm0.09_1$	$164 \pm 0.08_2$	164±0.119					
$165\pm0.12_{1}$	$167 \pm 0.11_0$	$165\pm0.10_0$	$166 \pm 0.12_2$	$144\pm0.78_1$	$144\pm0.99_9$	$145\pm0.00_2$	144±0.22					
$143\pm0.11_2$	$144\pm0.11_{1}$	$143\pm0.11_0$	$143\pm0.11_2$	$122\pm0.00_3$	$121\pm0.01_1$	$121\pm0.01_{1}$	$121\pm0.11_{1}$					
109±0.019	$110\pm0.02_{2}$	$109\pm0.06_9$	$109\pm0.09_0$	94 ± 0.099	$95 \pm 0.10_0$	$94\pm0.12_{6}$	$94\pm0.18_0$					
$91 \pm 0.24_4$	$90 \pm 0.24_1$	$91\pm0.09_2$	$93\pm0.05_5$									
	Ester											
FFT,	FFT,	SG,	SG,	FFT,	FFT,	SG,	SG,					
NP=3	NP = 5	PO = 2	PO = 4	NP=3	NP = 5	PO = 2	PO = 4					
$177 \pm 0.55_2$	$178\pm0.18_{1}$	$177\pm0.02_{2}$	177±0.121	174±0.115	$174\pm0.00_8$	$174\pm0.02_{2}$	$174\pm0.00_{1}$					
$162\pm0.11_{7}$	$161 \pm 0.01_8$	$162 \pm 0.01_1$	161±0.013	153±0.172	$153\pm0.07_{1}$	153±0.019	$153 \pm 0.09_2$					
133±0.33 ₂₆	$133 \pm 0.13_2$	133±0.118	133±0.107	138±0.118	$138 \pm 0.00_2$	$138\pm0.01_3$	$138\pm0.00_2$					
100±0.031	$101\pm0.01_{1}$	$100\pm0.11_3$	$100\pm0.01_0$	100±0.172	$100\pm0.03_2$	$100\pm0.00_2$	100±0.019					
$82\pm0.02_{1}$	$82\pm0.01_{1}$	$82\pm0.01_{1}$	$82\pm0.01_0$	68±0.119	$68 \pm 0.00_8$	$68 \pm 0.00_3$	$68 \pm 0.00_9$					
$62\pm0.02_2$	62±0.019	$62\pm0.01_8$	$62\pm0.01_2$	$46\pm0.10_4$	$46\pm0.00_{3}$	$46\pm0.00_{2}$	$46 \pm 0.01_7$					
56±0.061	56±0.072	$56\pm0.07_{2}$	$56\pm0.05_{2}$									
$45\pm0.00_{2}$	$45\pm0.02_9$	$45\pm0.00_{3}$	$45\pm0.00_1$									

ZE ZZ Acids FFT, NP=3 FFT, SG, SG, FFT, FFT, SG, SG, NP = 5PO = 2PO = 4NP=3 NP = 5PO = 4PO = 2 $306 \pm 0.075_2$ 301±0.2017 305±0.0089 $305 \pm 0.509_0$ $306 \pm 0.188_2$ 302±0.2833 302±0.551 $302 \pm 0.011_1$ 219±0.229 220±0.218 219±0.227 $220\pm0.08_{9}$ 180±0.0773 181±0.0763 $180\pm0.00_{1}$ $182 \pm 0.076_2$ 173±0.222 $174 \pm 0.21_7$ 175±0.228 138±0.0101 134±0.0127 138±0.6173 173±0.093 135±0.0123 137±0.367 $135 \pm 0.55_9$ $134 \pm 0.55_2$ 137±0.078 87±0.303 $89 \pm 0.31_3$ 88±0.331 90±0.312

Ester										
FFT,	FFT,	SG,	SG,	FFT, NP=3	FFT,	SG,	SG,			
NP=3	NP = 5	PO = 2	PO = 4		NP = 5	PO = 2	PO = 4			
239±0.281	239±0.033	239±0.015	239±0.032	240±0.012	$240\pm0.01_0$	240±0.011	$240\pm0.01_{1}$			
231±0.129	231±0.019	$231 \pm 0.01_2$	$231\pm0.10_1$	238±0.027	238±0.019	238±0.015	238±0.016			
194±0.042	$194 \pm 0.03_{6}$	194±0.036	194±0.015	200±0.033	$200\pm0.01_0$	200±0.013	200±0.016			
168±0.017	$168 \pm 0.20_2$	168±0.012	168±0.019	188±0.017	$188 \pm 0.01_2$	188±0.015	$188 \pm 0.01_7$			
150±0.052	$150\pm0.55_2$	$150\pm0.05_2$	150±0.055	$142\pm0.01_{1}$	$142 \pm 0.01_0$	$142\pm0.01_{1}$	$142\pm0.01_0$			
137±0.011	$137 \pm 0.08_3$	$137 \pm 0.01_{1}$	137±0.011	130±0.018	$130 \pm 0.01_0$	130±0.012	130±0.010			
126±0.010	126±0.013	126±0.011	126±0.012	106±0.018	106±0.016	106±0.017	$106\pm0.01_0$			
107±0.213	$107 \pm 0.41_2$	$107\pm0.11_2$	107±0.012	$78 \pm 0.09_9$	$78\pm0.01_7$	78±0.057	$78 \pm 0.00_5$			
68±0.027	$68 \pm 0.05_2$	$68 \pm 0.03_2$	$68\pm0.04_1$	$49\pm0.09_{2}$	$49\pm0.03_{2}$	$49\pm0.06_{2}$	$49 \pm 0.00_2$			
61±0.108	61±0.553	$61\pm0.10_2$	61±0.011	44±0.017	$44\pm0.01_{1}$	$44 \pm 0.00_8$	$44 \pm 0.01_{1}$			
$41 \pm 0.60_2$	$41 \pm 0.66_2$	$41 \pm 0.66_2$	$41\pm0.21_1$							

Table S4. Multiple Regression Analysis and ANOVA test the data in Table 3 for the $v_i^{(j)}$, FFT, N = 5 vs. SG., PO = 2 The Prob. F value for all calculations is <0.0001.

Value Acids	Std. Error	t-Value	Prob (> t)	r^2	ESD		df	SS	MS	F Statistic	EE
1.31.10 ⁻¹²	1.5.10-9	8.6.10 ⁻⁴	0.9993 ₅	1	1.3.10-9	Model	2	35827.42857	17913.71429	9.8.10 ²¹	
$-1.8.10^{-12}$	$5.1.10^{-10}$	-0.0036_3	0.9972 ₈			Error	4	$7.3.10^{-18}$	$1.8.10^{-18}$		
1	$5.1.10^{-10}$	1.9109	< 0.0001			Total	6	35827.42857			
											EZ
-0.1318 ₃	0.79122	0.16662	0.87575	0.9999 ₂	0.80925	Model	2	31441.09477	15720.5473 ₈	24005.2380 ₁	
0.7150 ₂	0.3539 ₆	2.0200_{5}	0.11349			Error	4	2.6195 ₂	0.6548 ₈		
0.28889	0.35309	0.81817	0.459 ₂			Total	6	31443.7142 ₂			
											ZE
-0.68379	1.49857	1.49857	-0.456 ₃	0.9997 ₁	1.67876	Model	2	38736.4414 ₁	19368.220 ₇	6872.5014 ₂	
1.0051	0.0087_{8}	0.0087_{8}	114.463 ₅			Error	4	11.2728 ₈	2.8182 ₂		
-6.9.10 ⁻⁴	0.00117	0.00117	-0.591 ₃			Total	6	38747.7142 ₉			
Esters											EE
$1.1.10^{-13}$	$1.2.10^{-10}$	$8.6.10^{-4}$	0.9993 ₄	1	$1.5.10^{-10}$	Model	2	17554.87 ₅	8777.437 ₅	$4.1.10^{-23}$	
$-1.7.10^{-12}$	$8.4.10^{-11}$	-0.0207_4	0.9842 ₆			Error	5	$1.1.10^{-19}$	$2.1.10^{-20}$		
1	8.6.10 ⁻¹¹	$1.1.10^{10}$	< 0.0001			Total	7	17554.87 ₅			

5

Figure S5. Solid-state Raman spectra of the polymorphs of the trifloxystrobin, tebuconazole (1) and propiconazole (2) in solid-mixtures ate different mole fractions.

Figure S6. Quantitative dependences of the integral intensities as function of the concentration the analytes, using the selected set of the bands as shown; the standart deviations were obtained by the three consequently measured samples and three independent determinations of the shown quantities.