Supporting Information

Unlabeled Multi Tumor Marker Detection System Based on Bioinitiated Light Addressable Potentiometric Sensor

Yun-Fang Jia^{1,#*}, Chun-Ying Gao^{2,#}, Jia He^{3,#}, Dao-Fu Feng⁴, Ming Wu², Yang Liu², Ke-Li Xing⁵, Wen-Sheng Cai³, Xi-Zeng Feng^{2*}

¹ College of Information Science Technology, Nankai University, 300071, China.

² State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University,

300071, China.

³ College of Chemistry, Nankai University, Tianjin, 300071, China.

⁴ School of Medicine, Nankai University, Tianjin 300071, China.

⁵ College of Biomedical and Bioengineering, Tianjin Medical University, 300020, China.

[#]These authors contributed equally.

1. Structure of L-dopa bio-initiated LAPS

Fig. S1. Arrayed LAPS' chips (A), the cross section along xx' direction (B), the biofunctionalization of LAPS (C) and Diagram for the serial connection between PC and the lock-in amplifier (D).

2. MXPS measurement of Si₃N₄ surface treated by L-dopa

Table S1. XPS determination of the relative atomic composition

	C1s(%)	N1s(%)	O1s(%)	Si2p(%)
Untreated	62.35	6.96	19.91	10.6
L-dopa coated	28.18	18.84	30.63	22.07

Electronic Supplementary Material (ESI) for Analyst This journal is O The Royal Society of Chemistry 2012

3. Molecular Models and Molecular Dynamics Simulations

Figure S2 Structures of (A) protonated L-Dopa and (B) hexagonal β -Si₃N₄

Table S2. The time-averaged SASA change of the phenyl and amino groups in *L*-Dopa and contact area between substrate and *L*-Dopa molecules for each orientation over the 10-ns trajectories.

Orientation	$\Delta SASA_{phenyl} [Å^2]$	$\Delta SASA_{amino} [Å^2]$	Δ Contact Area [Å ²]
Ι	-31.0	25.2	31.28
II	-6.9	5.4	19.16
III	-29.6	24.4	19.98
IV	-34.2	4.4	57.43

Figure S3. (A) The projection of centers of *L*-Dopa molecules onto the *XY* plane in the trajectory for each orientation in the small system. (B) Energy characterizing the interaction between *L*-Dopa in orientation III and the other three *L*-Dopa molecules in the small system. The color style is consistent with (A).

Figure S4. Time evolution of conformation in the large system containing 16 *L*-Dopa monomers. The water and ions are removed for clarity.

Figure S5. Time evolution of the contact area between substrate and *L*-Dopa molecules in the large system containing 16 *L*-Dopa monomers.

Measure ID	Measure name	Detail of Detection 5 2 3 4		
1519108_3 1519108_4 1519109_1 1519109_2 1519109_2 1519109_4 1519109_4 1519109_4 151003_1 1510031 15100511 N 1510051 1510051 1510051 1510051 1510051 1510051 1510051 1510051 1510051 1510051 1510051 1510051 1510051 151005 1	test of 4 markers Unit [ng(0)/nL] Iemo [AFF CEA CA199 SF	No.1 Name AFFab Con 0 Data AFFabR file Memo	No.2 Name CEAab Con 0 Data CEAabR file CEAabR Memo matibody of CEA	No.3 Name CA199ab Con D Data CA199abR file Memo antibody of CA 19-9
biktF1 biktF1 Voltage Controller vorknode CY bi asnode CS	│Illumination Frequency QQtz) β Address 指定地址	No.4 Name Ferritin ab Con 0 Data file FabR file Memo	No.5 Name AFPag Con 0 Data AFPagR file Memo	No.6 Name CEAsg Con 0 Data CEAsgR file CEAsgR Memo
ias (V) -5 .ignal type V .ockin mode Tan .om port COM1 .ort Stilling SEO(0, n, 8, 1 .ort Stilling SEO(0, n, 8, 1 .ort Stilling SEO(0, n, 8, 1) .ort Stilling St	Duration (min) 医min Power (%) 75 Wave 方法 Com port (COM) COM4 Port setting 写600, n, 8, 1 Memo	No.7 Name CA199ag Con D Data file CA199agR	No.8 Name Ferritin ag Con 0 Data FagR	No.9 Name Con Data file

4. User interfaces of the systems' controlling platform

Figure S6 System working platform for user. (A) central controlling interface, data displaying interface for four tumor markers' antibodies (B) and antigens (C).