Supplementary Information

Scanning Positional Variations in Single-Nucleotide Mismatch of DNA: An Electrochemical Study

Md. Nazmul Alam, Mohtashim Hassan Shamsi and Heinz-Bernhard Kraatz*

Department of Physical and Environmental Sciences, University of Toronto, Scarborough 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4

*Corresponding author's E-mail: bernie.kraatz@utoronto.ca

M25) in ds-DNA films.								
	Zn present/absent	$R_s \Omega \cdot cm^2$	C _{dl} µF∙cm ⁻²	$\begin{array}{c} R_{ct} \\ \Omega \cdot cm^2 \end{array}$	CPE (Yo)x10 ⁻⁶	n	$R_x \Omega \cdot cm^2$	ΔR_{ct} $\Omega \cdot cm^2$
FC	absent	0.03	3.5 (3.1)	1089 (130)	2.4 (2.1)	0.91 (0.02)	1.5 (0.7)	905
	present	0.04	2.9 (0.5)	184 (40)	3.0 (0.4)	0.92 (0.02)	1.0 (0.1)	(130)
M1	absent	0.10	3.0 (2.9)	916 (150)	2.3 (0.9)	0.91 (0.02)	2.5 (2.1)	749
	present	0.10	1.8 (0.2)	167 (45)	1.6 (0.5)	0.93 (0.03)	1.7 (0.1)	(175)
M2	absent	0.01	2.4 (0.9)	771 (80)	2.3 (1.2)	0.91 (0.03)	1.9 (0.8)	560
	present	0.01	2.2 (0.3)	211 (110)	1.9 (0.9)	0.91 (0.02)	2.4 (0.7)	(110)
М3	absent	0.02	1.7 (0.1)	428 (60)	2.7 (0.7)	0.90 (0.01)	1.6 (0.1)	263
	present	0.02	1.9 (0.3)	165 (25)	2.1 (0.4)	0.92 (0.02)	1.7 (0.1)	(70)
M4	absent	0.02	1.7 (0.1)	519 (90)	2.7 (0.7)	0.90 (0.01)	1.6 (0.1)	309 (145)
	present	0.02	1.9 (0.3)	210 (50)	2.1 (0.4)	0.92 (0.02)	1.7 (0.1)	
M5	absent	0.07	2.2 (0.6)	334 (45)	2.9 (0.8)	0.90 (0.02)	1.6 (0.4)	218
	present	0.07	2.3 (0.7)	116 (45)	2.6 (0.8)	0.90 (0.03)	1.5 (0.1)	(20)
M6	absent	0.07	2.4 (0.8)	463 (75)	3.1 (0.6)	0.92 (0.01)	1.2 (0.1)	246
	present	0.07	3.2 (1.5)	217 (55)	2.4 (0.4)	0.92 (0.01)	1.2 (0.1)	(35)
M7	absent	0.10	2.6 (0.8)	730 (80)	5.9 (4.5)	0.93 (0.02)	1.6 (0.9)	398
	present	0.10	2.6 (1.0)	332 (45)	4.8 (2.0)	0.89 (0.06)	1.2 (0.2)	(50)
M8	absent	0.11	3.1 (1.6)	607 (75)	2.8 (1.0)	0.89 (0.05)	1.7 (0.5)	401
	present	0.06	2.3 (1.8)	206 (65)	4.1 (1.2)	0.91 (0.02)	1.3 (0.1)	(40)
M9	absent	0.08	2.9 (1.4)	613 (75)	2.2 (0.8)	0.92 (0.02)	2.2 (0.8)	452
1117	present	0.05	5.3 (0.7)	161 (70)	2.3 (0.7)	0.89 (0.01)	1.8 (0.3)	(50)
M10	absent	0.06	2.1 (0.5)	725(75)	2.8 (0.6)	0.90 (0.05)	1.2 (0.1)	619
10110	present	0.05	1.6 (0.5)	106 (45)	3.2 (2.5)	0.93 (0.04)	1.3 (0.1)	(30)
M11	absent	0.01	1.7 (0.4)	925 (120)	2.2 (0.3)	0.93 (0.02)	1.8 (0.2)	488
19111	present	0.02	1.8 (0.4)	437 (15)	2.2 (0.6)	0.94 (0.02)	1.6 (0.1)	(130)
M12	absent	0.03	2.0 (0.3)	1102 (310)	1.9 (0.5)	0.94 (0.03)	1.8 (0.1)	793
17112	present	0.02	2.0 (0.3)	309 (190)	2.1 (0.3)	0.93 (0.02)	1.7 (0.1)	(150)
M13	absent	0.05	4.2 (2.9)	821 (35)	3.4 (1.8)	0.91 (0.02)	1.7 (0.5)	713
	present	0.05	2.8 (2.2)	108 (35)	2.3 (0.7)	0.92 (0.03)	1.4 (0.2)	(60)
M14	absent	0.01	2.7 (1.7)	702 (80)	2.2 (1.7)	0.91 (0.02)	1.7 (0.7)	594
	present	0.01	1.3 (0.5)	108 (25)	1.7 (0.5)	0.89 (0.04)	1.9 (0.3)	(95)
M15	absent	0.01	3.2 (1.6)	578 (150)	2.5 (1.1)	0.91 (0.06)	2.4 (1.2)	548
	present	0.02	1.7 (0.3)	120 (80)	2.6 (1.5)	0.89 (0.05)	1.6 (0.3)	(80)
M16	absent	0.01	1.9 (0.3)	606 (90)	2.3 (0.8)	0.90 (0.02)	1.8 (0.3)	375
	present	0.01	2.1 (0.4)	231 (40)	1.3 (0.9)	0.91 (0.03)	1.7 (0.5)	(80)
M17	absent	0.02	1.8 (0.2)	845 (165)	2.5 (1.2)	0.95 (0.04)	2.1 (0.6)	429
	present	0.01	2.2 (0.3)	416 (125)	2.7 (0.7)	0.92 (0.04)	1.9 (0.8)	(60)

Table S1. Values of the electrical components obtained by fitting the EIS data with the equivalent circuit. Data were taken from fully complementary (FC) and 25 mismatch positions (from M1 to M25) in ds-DNA films.

Table 2. Continued.

	Zn present/absent	$R_s \Omega \cdot cm^2$	C _{dl} µF∙cm ⁻²	R_{ct} $\Omega \cdot cm^2$	CPE (Yo)x10 ⁻⁶	n	$R_x \Omega \cdot cm^2$	ΔR_{ct} $\Omega \cdot cm^2$
M18	absent	0.01	2.3 (0.1)	772 (130)	2.3 (1.1)	0.93 (0.05)	2.3 (1.1)	387
	present	0.01	1.9 (0.1)	385 (65)	2.1 (1.7)	0.91 (0.04)	2.2 (1.0)	(90)
M19	absent	0.09	3.1 (1.1)	454 (70)	2.2 (1.1)	0.90 (0.03)	3.7 (1.9)	301
	present	0.10	2.8 (1.1)	153 (25)	2.5 (0.6)	0.89 (0.04)	3.9 (3.1)	(70)
M20	absent	0.07	3.3 (0.9)	560 (125)	3.2 (1.0)	0.91 (0.02)	2.5 (1.4)	334
	present	0.07	3.0 (1.2)	226 (80)	2.1 (0.6)	0.91 (0.03)	1.6 (1.2)	(100)
M21	absent	0.02	2.9 (1.1)	758 (95)	1.9 (0.4)	0.92 (0.05)	1.8 (0.9)	541
	present	0.03	2.7 (0.9)	217 (60)	1.8 (0.2)	0.91 (0.03)	2.1 (0.5)	(120)
M22	absent	0.03	3.7 (2.3)	968 (140)	1.7(0.5)	0.90 (0.04)	3.6 (1.5)	745
	present	0.01	4.6 (1.3)	223 (80)	2.8 (3.5)	0.89 (0.25)	3.5 (2.1)	(170)
M23	absent	0.03	2.5 (0.7)	975 (215)	3.6 (1.6)	0.94 (0.04)	4.3 (2.5)	764
	present	0.04	1.8 (0.7)	211 (100)	2.7 (1.7)	0.91 (0.04)	4.1 (1.9)	(145)
M24	absent	0.01	3.3 (2.7)	840 (130)	2.6 (0.9)	0.95 (0.1)	4.2 (1.9)	632
	present	0.03	3.5 (1.8)	208 (65)	3.4 (3.5)	0.91 (0.07)	3.7 (1.9)	(120)
M25	absent	0.01	2.6(0.6)	1024 (140)	1.8 (1.0)	0.93 (0.02)	4.7 (1.1)	714
	present	0.01	4.6 (0.1)	310 (85)	3.8 (0.8)	0.91 (0.15)	3.9 (0.5)	(155)

The solution resistance, R_s , remains constant at 0.01-0.05 $\Omega \cdot cm^2$ for both before and after Zn^{2+} addition, as would expected for measurements under identical conditions of electrolyte concentration and temperature. Moreover, the distance between the Pt counter electrode and the gold electrode was kept approximately constant in order to minimize variations in the solution resistance R_s . There are minor variations in the C_{d1} values among the ds-DNA films. This irregular change was in the order of the measuring error. Since the exponential modifier, n, is greater than 0.9, the CPE can be considered as a capacitor according to the previous report.¹ The charge transfer resistance, R_{ct} , was found to decrease significantly once the metal ion is added. The values of R_x are similar for almost all of the ds-DNA films before addition of Zn^{2+} . This indicates that the number and size of the assumed pinholes are almost same in all of the films. However, a slight but random decrease in R_x was observed in most of the films after addition of Zn^{2+} .

Figure S1. Typical chronocoulometric curves for ds-DNA modified electrode in the absence of (-) and presence of (\Box) RuHex. The lines are the fits to the data to determine the intercepts at *t* = 0. The intercepts of the plot of charge (*Q*) versus t^{1/2} was the measured value of charges on the modified electrodes.

Chronocoulometric measurements were performed on DNA modified electrodes in 10 mM Tris in absence and presence of 5 μ M Ru(NH₃)₆³⁺. Regression lines show the value of charge on Y-axis in absence and presence of Ru(NH₃)₆³⁺.

The total charge passing through the electrode is given by the integrated Cottrell equation¹:

$$Q = 2nFAC(D/\pi)T^{1/2} + Q_{dl} + nFA\Gamma_{Ru}$$
(1)

where *n* is the number of electrons per molecule for reduction, *F* the Faraday constant (96500 C/mol), *A* the electrode area (cm²), *D* the diffusion coefficient (cm²·s⁻¹), *C* the bulk concentration (mol·cm⁻³), Q_{dl} the capacitive charge (C), and $nFA\Gamma_{Ru}$ the charge from the reduction of Γ_{Ru} (mol·cm⁻²). The Chronocoulometry intercept of the *Q* vs. $T^{1/2}$ plot at t = 0 represents the sum of the charges of double-layer capacitance and the surface-confined species, $[Ru(NH_3)_6]^{3+}$ in this

¹ Electrochemical Methods: Fundamentals and Applications, ed. By A.J. Bard, L.R. Faulkner, (Wiley, New York, 2001)

case. By subtracting the capacitive charge (intercept at T = 0 in the absence of redox cation), the total charge of surface-confined $[Ru(NH_3)_6]^{3+}$ were evaluated using following formulae.

$$Q_{sum} = Q_{dl} + nFA\Gamma_{Ru} \tag{2}$$

and

$$\Gamma_{Ru} = (Q_{\text{sum}} - Q_{\text{dl}}) / nFA \tag{3}$$

where Γ_{Ru} is surface density of surface-confined $[Ru(NH_3)_6]^{3+}$ and Q_{sum} is a sum of charges. Then, surface coverage of the DNA was evaluated by following formula.

$$\Gamma_{DNA} = \Gamma_{Ru} \left(z/m \right) N_{\rm A} \tag{3}$$

where Γ_{DNA} is the DNA surface density in molecules \cdot cm⁻², *m* is the number of nucleotides in the probe DNA, *z* is the charge of the redox molecule, and N_A is Avogadro's number.

^{1.} S. E. Creager, T. T. Wooster, Anal. Chem., 1998, 70, 4257-4263.