Supporting Information

BODIPY Based Colorimetric Fluorescent Probe for Selective Thiophenol Detection: Theoretical and Experimental Studies

Dnyaneshwar Kand,^a Pratyush Kumar Mishra,^a Tanmoy Saha,^a Mayurika Lahiri^b and Pinaki Talukdar^{*a}

^{*a*} Department of Chemistry, Dmitri Mendeleev Block, Indian Institute of Science Education and Research Pune, India.

^b Department of Biology, Indian Institute of Science Education and Research Pune, India.

E-mail: ptalukdar@iiserpune.ac.in

Conte	Page Number	
I.	General Methods	S1
II.	Physical Measurements	S1-S2
III.	Theoretical Calculations	S2-S5
IV.	Experimental Procedures	S5-S6
V.	Crystal Structure Parameters	S7
VI.	Photophysical Properties	S7-S8
VII.	Thiols Sensing	S8-S9
VIII.	Mass Spectrometric Analysis of Thiophenol Addition Reaction	S10
IX.	Live Cell Imaging	S10
X.	NMR Data	S11-S13
XI.	References	S14

I. General Methods.

All reactions were conducted under the nitrogen atmosphere. All the chemicals were purchased from commercial sources and used as received unless stated otherwise. Solvents: petroleum ether and ethyl acetate (EtOAc) were distilled prior to thin layer and column chromatography. THF was pre-dried and refluxed over Na (1% w/v) and benzophenone (0.2% w/v) under an inert atmosphere until the blue color of the benzophenone ketyl radical anion persists and then distilled. Column chromatography was performed on Merck silica gel (100–200 mesh). TLC was carried out with E. Merck silica gel 60-F-254 plates.

II. Physical Measurements.

The ¹H and ¹³C spectra were recorded on 400 MHz Jeol ECS-400 (or 100 MHz for ¹³C) spectrometers using either residual solvent signals as an internal reference or from internal tetramethylsilane on the δ scale (CDCl₃ $\delta_{\rm H}$, 7.24 ppm, $\delta_{\rm C}$ 77.0 ppm). The chemical shifts (δ) are reported in ppm and coupling constants (*J*) in Hz. The following abbreviations are used: m (multiplet), s (singlet), br s (broad singlet), d (doublet), t (triplet) dd (doublet of doublet). Low-resolution mass spectra were recorded on an Applied Biosystems 4800 Plus MALDI TOF/TOF analyzer. High-resolution mass spectra were obtained from MicroMass ESI-TOF MS spectrometer.

Absorption spectra were recorded on a Thermo Scientific, Evolution 300 UV-VIS spectrophotometer. Steady State fluorescence experiments were carried out in a micro fluorescence cuvette (Hellma, path length 1.0 cm) on a TCSPC instrument (Horiba Jobin Yvon, FluoroMax-4). (FT-IR) spectra were obtained using NICOLET 6700 FT-IR spectrophotometer as KBr disc and reported in cm⁻¹. Melting points were measured using a VEEGO Melting point apparatus. All melting points were measured in open glass capillary and values are uncorrected. Crystal structures were recorded on a Bruker single crystal X-Ray diffractometer. The fluorescence images were taken using Olympus Inverted IX81 equipped with Hamamatsu Orca R2 microscope.

III. Theoretical Calculations.

All theoretical calculations (DFT and TDDFT) were carried out using Gaussian 03 software.^{S1}

Atom #	Atom Type	X	У	Z
1	С	-2.015	-0.842	-0.055
2	Ν	-0.762	-0.964	0.545
3	В	-0.217	-0.065	1.697
4	Ν	-1.426	0.760	2.196
5	С	-2.662	0.854	1.559
6	С	-2.964	0.064	0.432
7	С	-1.421	1.623	3.227
8	С	-2.646	2.303	3.293
9	С	-3.424	1.832	2.242
10	С	-2.089	-1.807	-1.095
11	С	-0.895	-2.502	-1.115
12	С	-0.101	-1.957	-0.078
13	F	0.788	0.776	1.202
14	F	0.300	-0.874	2.712
15	Ν	1.152	-2.369	0.367
16	С	-4.284	0.180	-0.230
17	С	-5.470	-0.009	0.494
18	С	-6.705	0.087	-0.133
19	С	-6.806	0.388	-1.497
20	С	-5.622	0.583	-2.213
21	С	-4.379	0.474	-1.596
22	С	-8.154	0.491	-2.165
23	S	2.483	-2.451	-0.670
24	0	3.519	-3.218	-0.017
25	0	1.959	-2.824	-1.975
26	С	3.049	-0.718	-0.844
27	С	2.802	-0.137	-2.088
28	С	3.199	1.168	-2.359
29	С	3.865	1.877	-1.372
30	С	4.148	1.325	-0.133
31	С	3.728	0.031	0.128
32	Ν	4.296	3.272	-1.645
33	0	4.026	3.731	-2.744
34	0	4.888	3.860	-0.755
35	Ν	4.028	-0.474	1.492
36	0	5.016	-0.018	2.040
37	0	3 2 5 9	-1 285	1 981

Table S1: Atomic coordinates calculated for **3** from DFT B3LYP/6-311G(d,p) geometry optimization.

Electronic Supplementary Material (ESI) for Analyst This journal is © The Royal Society of Chemistry 2012

38	Н	-0.549	1.721	3.857
39	Н	-2.914	3.051	4.022
40	Н	-4.421	2.144	1.976
41	Н	-2.948	-1.980	-1.722
42	Н	-0.599	-3.313	-1.757
43	Н	1.412	-2.071	1.307
44	Н	-5.419	-0.261	1.547
45	Н	-7.608	-0.079	0.446
46	Н	-5.670	0.828	-3.268
47	Н	-3.476	0.646	-2.170
48	Н	-8.794	1.216	-1.655
49	Н	-8.061	0.798	-3.208
50	Н	-8.677	-0.471	-2.145
51	Н	2.303	-0.727	-2.844
52	Н	3.005	1.631	-3.316
53	Н	4.682	1.889	0.618

Fig. S1 View of the DFT B3LYP/6-311G(d,p) geometry optimized structure (**A**), the frontier molecular orbitals (MOs), HOMO (**B**), LUMO (**C**) and LUMO+1 (**D**) of the probe **3**.

Atom #	Atom Type	х	У	Z
1	С	-0.523	-1.005	-0.038
2	Ν	-1.921	-0.901	-0.047
3	В	-2.716	0.413	0.211
4	Ν	-1.703	1.558	-0.015
5	С	-0.319	1.411	0.001
6	С	0.281	0.125	0.001
7	С	-1.986	2.877	-0.031
8	С	-0.801	3.619	-0.031
9	С	0.251	2.701	-0.001

Table S2: Atomic coordinates calculated for 4 from DFT B3LYP/6-311G(d,p) geometry optimization.

10	С	-0.198	-2.383	-0.217
11	С	-1.374	-3.085	-0.332
12	С	-2.435	-2.128	-0.233
13	F	-3.209	0.437	1.513
14	F	-3.792	0.484	-0.697
15	Ν	-3.765	-2.350	-0.288
16	С	1.758	-0.014	0.013
17	С	2.550	0.586	-0.977
18	С	3.931	0.438	-0.966
19	С	4.576	-0.300	0.034
20	С	3.784	-0.891	1.021
21	С	2.398	-0.756	1.012
22	С	6.077	-0.451	0.034
23	Н	-3.010	3.218	-0.029
24	Н	-0.728	4.695	-0.047
25	Н	1.306	2.919	0.021
26	Н	0.803	-2.779	-0.281
27	Н	-1.501	-4.144	-0.493
28	Н	-4.363	-1.549	-0.442
29	Н	2.074	1.152	-1.770
30	Н	4.521	0.903	-1.751
31	Н	4.256	-1.460	1.815
32	Н	1.807	-1.207	1.801
33	Н	6.574	0.524	0.033
34	Н	6.422	-1.002	0.911
35	Н	6.420	-0.989	-0.855
36	Н	-4.092	-3 248	-0.601

Fig. S2 View of the DFT B3LYP/6-311G(d,p) geometry optimized structure (**A**), the frontier molecular orbitals (MOs), HOMO (**B**), LUMO (**C**) and LUMO+1 (**D**) of **4**.

 Table S3: Selected electronic excitation energies (eV) and oscillator strengths (f), configurations of the low-lying excited states of the probe 3 and Amine 4, calculated by TDDFT//B3LYP/6-311G(d,p), based on the optimized ground state geometries.

	Flootnonio	TDDFT/B3LYP/6-311(d,p)				
Molecule	Electronic	Energy ^a	Wavelength	f^{b}	Main configurations ^c	CI
	transition	(eV)	(nm)			coefficients ^d
	C \C	2.26	547	0.0561	HOMO→LUMO	0.67671
	$\mathbf{s}_0 \rightarrow \mathbf{s}_1$				HOMO→LUMO+1	-0.16337
	$S_0 \rightarrow S_2$	2.78	447	0.0192	HOMO→LUMO+1	-0.12733
					HOMO→LUMO+2	0.68664
Probe 3	$S_0 \rightarrow S_3$	2.93	423	0.4016	HOMO-2→LUMO+1	-0.12250
					HOMO→LUMO+1	0.56209
					HOMO→LUMO+2	0.15205
	$S_0 \rightarrow S_4$	3.31	375	0.1218	HOMO-1→LUMO	0.62194
					HOMO-1→LUMO+1	0.28074
	$S_0 \rightarrow S_1$	3.00	413	0.4693	HOMO→LUMO	0.57663
Amine 4	$S_0 \rightarrow S_2$	3.64	341	0.0896	HOMO-2→LUMO	-0.44157
					HOMO-1→LUMO	0.49678

^{*a*} Only the selected low-lying excited states are presented. ^{*b*} Oscillator strength. ^{*c*} Only the main configurations are presented. ^{*d*} The CI coefficients are in absolute values.

IV. Experimental Procedures.

Scheme S1. Synthesis of Fluorescent thiophenol probe 3.

Synthesis of 7-bromo-5,5-difluoro-10-(p-tolyl)-5H-dipyrrolo[1,2-c:2',1'f][1,3,2]diazaborinin-4-ium-5-uide (7): This compound was prepared in sequence of steps in one pot reaction. Meso-(p-tolyl) dipyrromethane **6** (500 mg, 2.12 mol) was treated with one equivalent of N bromosuccinimide (377 mg, 2.12 mmol) in dry THF (50 mL) at -78°C under nitrogen for 1 h. The reaction mixture was warmed to

room temperature and DDQ (483 mg, 2.12 mmol) was added. The solvent was removed on rotary evaporator under vacuum. The crude compound was subjected to flash column chromatography using CH_2Cl_2 , concentrated on rotary evaporator, dissolved in CH_2Cl_2 , neutralized with triethylamine (10.5 mL, 75.4 mmol) and treated with $BF_3 \bullet Et_2O$ (13.5 mL, 107.0 mmol) at room temperature for additional 1 h. The reaction mixture was washed successively with 0.1 M NaOH solution and water. The organic layers were combined, dried over Na₂SO₄, filtered, and evaporated.

The crude compound was subjected to silica gel column chromatography and the required 3-bromo derivative of BODIPY **7** was collected as second band using of petroleum ether/dichloromethane (90:10). The solvent was removed on rotary evaporator under vacuo and afforded pure **7** as red orange powder (495 mg, 65% yield). M.p. = 228 - 229 °C; IR (KBr): γ_{max}/cm^{-1} 3446, 2915, 2847, 1570, 1543, 1524, 1410, 1386, 1312, 1255, 1182, 1111; ¹H NMR (400 MHz, CDCl₃): δ 7.94 (s, 1H), 7.42 (d, *J* = 8.1 Hz, 2H), 7.33 (d, *J* = 8.1 Hz, 2H), 6.93 (d, *J* = 4.2 Hz, 1H), 6.84 (d, *J* = 4.2 Hz, 1H), 6.56 (d, *J* = 3.1 Hz, 1H), 6.51 (d, *J* = 4.3 Hz, 1H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 145.5, 144.2, 141.3, 135.4, 134.6, 131.5, 131.4, 131.2, 130.4, 130.1, 129.1, 121.7, 118.8, 21.3.

Synthesis of 7-amino-5,5-difluoro-10-(p-tolyl)-5H-dipyrrolo[1,2-c:2',1'f][1,3,2]diazaborinin-4-ium-5-uide 4: In a 25 ml round bottomed flask were added monobromo BODIPY 7 (104 mg, 0.29 mmol), aqueous NH_3 solution (2 mL) and dissolved in Acetonitrile 2 mL). The reaction mixture was stirred at room temperature for 2.5 h. After completion of the reaction, the reaction mixture was

evaporated under reduced pressure to remove acetonitrile and aqueous solution was extracted with Ethyl acetate (10 mL × 3). The combined organic layer was washed with water (10 mL × 3), brine (20 mL) and dried over Na₂SO₄. The solvent was removed under reduced pressure to obtain a brown residue which was purified by column chromatography over silica gel (Eluent: 20 % EtOAc in petroleum ether) to furnish the pure **4** (82 mg, 96%) as a yellow solid. M.p. = 194 – 195 °C (decomposed); IR (KBr): γ_{max}/cm^{-1} 3450, 3367, 3279, 1665, 1595, 1573, 1522, 1474, 1408, 1394, 1376, 1257, 1217, 1170, 1156, 1098, 1059; ¹H NMR (400 MHz, CDCl₃): δ 7.44 (br s, 1H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.26 – 7.24 (m, 2H), 6.92 (d, *J* = 4.88 Hz, 1H), 6.48 (d, *J* = 3.36 Hz, 1H), 6.34 – 6.32 (m, 1H), 6.07 (d, *J* = 4.80 Hz, 1H), 5.76 (br s, 2H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 161.1, 139.5, 136.1, 134.8, 133.2, 132.7, 131.7, 131.6, 130.3, 129.0, 120.9, 21.5; HRMS (ESI): Calc. for C₁₆H₁₄BF₂N₃Na [M+Na]⁺: 320.1147; Found: 320.1144.

Synthesis of 7-(2,4-dinitrophenylsulfonamido)-5,5-difluoro-10-(p-tolyl)-5Hdipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinin-4-ium-5-uide 3: In a 25 ml round bottomed flask placed under nitrogen atmosphere amine **4** (110 mg, 0.37 mmol) was dissolved in dry THF (10 mL) and cooled to 0°C in an ice bath. NaH (60 % suspension in mineral oil) (22 mg, 0.37 mmol) and 2,4-dinitrobenzene sulfonyl chloride (297 mg, 1.12 mmol) were added at 0°C and the reaction mixture was allowed to warm at room temperature over the period of 4 h. After completion

of the reaction, the reaction mixture was quenched with satutated aqueous NH₄Cl solution and extracted with Ethyl acetate (20 mL × 3). The combined organic layer was washed with water (10 mL × 3), brine (20 mL) and dried over Na₂SO₄. The solvent was removed under reduced pressure to obtain a brown residue which was purified by column chromatography over silica gel (Eluent: 25% EtOAc in petroleum ether) to furnish the pure **3** (110 mg, 56%) as dark brown solid. M.p. = >250 °C (decomposed); IR (KBr): v_{max} /cm⁻¹ 3472, 2922, 2853, 1585, 1545, 1507, 1454, 1406, 1347, 1289, 1242, 1138, 1106, 1065, 1015; ¹H NMR (400 MHz, CD₃OD): δ 8.55 (d, *J* = 2.2 Hz, 1H), 8.51 (d, *J* = 8.7 Hz, 1H), 8.45 (d, *J* = 2.24 Hz, 1H), 7.33 – 7.24 (m, 5H), 6.83 (d, *J* = 5.08 Hz, 1H), 6.63 (d, *J* = 5.04 Hz, 1H), 6.26 – 6.21 (m, 2H), 2.39 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ 165.9, 149.2, 147.8, 142.5, 138.9, 134.8, 133.6, 132.3, 131.5, 130.5, 130.2, 129.9, 129.5, 119.9, 117.6, 117.0, 112.7, 21.4; HRMS (ESI): Calc. for C₂₂H₁₆BF₂N₅O₆SNa [M+Na]⁺: 550.0780; Found: 550.0778.

V. Crystal Structure Parameters.^{S2}

Fig. S3 ORTEP diagram of amine 4.

Crystal structure of compound 4 (CCDC 863628): $C_{16}H_{14}BF_2N_3$; Compound 4 was crystallized from methanol at room temperature. A yellow rectangular shaped crystal with approximate dimensions 0.36 x 0.11 x 0.035 mm gave an Monoclinic with space group *P21/c*; *a* = 15.746(3) *b* = 8.9776(18) *c* = 10.2886(19) Å, $\alpha = 90^{\circ} \beta = 99.120(4)^{\circ} \gamma = 90^{\circ}$; *V* = 1436.1(5) Å³; *T* = 296 (2) K; *Z* = 4; $\rho_{calc} = 1.365$ Mgm⁻³; $2\theta_{max} = 56.98^{\circ}$; *MoKal* = 0.71073 Å. Fine-focus sealed tube source with graphite monochromator. *R* = 0.0589 (for 1835 reflection *I*>2 $\sigma(I)$), *wR* = 0.1907 which was refined against |*F2*| and S = 0.990 for 201 parameters and 3567 unique reflections. The structure was obtained by direct methods using SHELXS-97.^{S3} All non-hydrogen atoms were refined isotropically. The hydrogen atoms were fixed geometrically in the idealized position and refined in the final cycle of refinement as riding over the atoms to which they are bonded. $\mu = 0.100$ mm⁻¹;

VI. Photophysical Properties.

в					
	compound	λ_{ex}	ε	λ _{em}	Φ
		(nm)	(L mol cm ⁻¹)	(nm)	
	3	483	28744	529	0.0018

Fig. S4 Photophysical properties of the probe 3 recorded in phosphate buffer.

B					
	compound	λ _{ex}	ε	λ _{em}	Φ
		(nm)	(L mol cm ⁻¹)	(nm)	
	4	444	21192	521	0.153

Fig. S5 Photophysical properties of amine 4 recorded in phosphate buffer.

VII. Thiols Sensing.

Procedures:

Preparation of the medium: Deionized water was used throughout all experiments. All experiments were carried out in a phosphate buffer (0.01 M, pH 7.3) with/without 0.7 % DMSO (maximum).

Preparation of the solution of 3: A stock solution of **3** (1327 μ M) was prepared in DMSO. Final concentration of **3** during each assay was 10 μ M with 1% DMSO (maximum).

Preparation of the solution of amino acids: Stock solutions of aniline, phenol, mercaptoethanol and thiophenol were prepared in DMSO (concentrations ranging from 10737 μ M to 21251 μ M). Stock solutions of other analytes including amino acids were prepared in H₂O with varied concentrating ranging from 1952 μ M to 19876 μ M. Calculated volumes of analytes were added from respective stock solutions to fluorescence each cuvette to provide 100 μ M. All spectral data were recorded at 15 min after the addition of analyte(s) by exciting at 444 nm. The excitation and emission slit width was 3 nm and 3 nm respectively.

Fig. S6 Fluorescence kinetics of thiol (100 μM) addition to the probe **3** (10 μM in 10 mM PBS buffer containing 1% DMSO, pH 7.3).

Detection limit

The detection limit was determined based on the fluorescence titration.^{S4} Probe **3** was employed at 10 μ M and the slit was adjusted to 3.0 nm/3.0 nm. To determine the S/N ratio, the emission intensity of **3** without PhSH was measured by 6 times and the standard deviation of blank measurements was determined. Under these conditions, a good linear relationship between the fluorescence intensity and the thiophenol concentration could be obtained in the 2 - 10 μ M (R = 0.99516), as shown in Fig. S7. The detection limit is then calculated with the equation: detection limit = $3\sigma_{bi}/m$, where σ_{bi} is the standard deviation of 6 blank measurements, *m* is the slope between intensity versus sample concentration. The detection limit was measured to be 3.44 × 10⁻⁸ M (Table S4) at S/N = 3 (signal-to-noise ratio of 3:1).

Fig. S7 The linear relationship (at 529 nm) between the fluorescence intensity and PhSH concentration (2, 4, 6, 8 and 10 μ M) for the probe **3** (10 μ M in 10 mM PBS buffer containing 1% DMSO, pH 7.3).

$\sigma_{ m bi}$	т	S/N	detection limit			
203.49	1.7739×10^{4}	3	$3.44 \times 10^{-8} \text{ M}$			

Table S4: Calculation of detection limit of PhSH with the probe 3.

VIII. Mass Spectrometric Analysis of Thiophenol Addition Reaction.

Fig. S8 ESI-MS of the probe 3 (10 μ M in 10 mM PBS buffer containing 1% DMSO, pH 7.3) titrated with PhSH (100 μ M).

IX. Live Cell Imaging.

The HeLa cells were purchased from National Centre for Cell Science, Pune (India). HeLa cells were grown in DMEM supplemented with 10% heat inactivated fetal bovine serum (FBS), 100 IU/ml penicillin, 100 mg/ml streptomycin and 2 mM L-glutamine. Cultures were maintained in a humidified atmosphere with 5% CO₂ at 37 °C. The cultured cells were subcultured twice each week, seeding at a density of about 15×10^4 cells/ml. Cell viability was determined by the trypan blue dye exclusion method. The fluorescence images were taken using Olympus Inverted IX81 equipped with Hamamatsu Orca R2 microscope by exciting at $\lambda_{ex} = 450$ nm. The HeLa cells were incubated with solution of the probe 3 (10 μ M in 1:200 DMSO-DMEM v/v, pH = 7.4) at 37 °C for 30 min. After washing with PBS the fluorescence images were acquired. In this case no significant fluorescence was observed. HeLa cells were then treated with PhSH (1 µM in 1:1000 DMSO-DMEM v/v, pH = 7.4) at 37 °C for 30 min and then incubated with solution of the probe 3 (10 μ M in 1:200 DMSO-DMEM v/v, pH = 7.4) at 37 °C for 30 min. After washing with PBS the fluorescence images showed strong green fluorescence. In the control experiment, Hela cells were incubated with PhSH (1 µM) in the culture medium for 30 min at 37 °C, after washing with PBS to remove the remaining PhSH, the cell were treated with N-phenylmaleimide (1 mM 1:100 DMSO-DMEM v/v, pH = 7.4) for 30 min at 37 °C followed by washing with PBS, and then incubated with probe 3 (10 μ M in 1:200 DMSO-DMEM v/v, pH = 7.4) for 30 min at 37 °C. In this case fluorescence was not observed.

X. NMR Data.

Fig. S12 ¹³C NMR spectra of 4 in CDCl₃.

Fig. S14 ¹³C NMR spectra of 3 in DMSO-d₆.

XI. References.

- S1 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. *Gaussian 03, Revision C.02*, 2003.
- S2 CCDC 863628 contains the supplementary crystallographic data for the compound 4.
 Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK. fax: (+44) 1223-336-033; www.ccdc.cam.ac.uk/data_request/cif.
- **S3** (a) SHELXS-97: G. M. Sheldrick, *Acta Crystallogr. Sect A*, 1990, **46**, 467, (b) G. M. Sheldrick, SHELXL-97, Universität Göttingen (Germany) 1997.
- S4 (a) B. P. Joshi, J. Park, W. I. Lee and K. Lee, *Talanta.*, 2009, 78, 903; (b) H. Guo, Y. Jing, X. Yuan, S. Ji, J. Zhao, X. Li and Y. Kan, *Org. Biomol. Chem.*, 2011, 9, 3844; (c) D. Kand, A. M. Kalle, S. J. Varma and P. Talukdar, *Chem. Commun.* 2012, 48, 2722.