Electronic Supplementary Information

A new fluorescent and colorimetric probe for Cu²⁺ in live cells

Wei-Yong Liu^{a†,}, Hai-Ying Li^{b†,}, Bao-Xiang Zhao^{a,*}, Jun-Ying Miao^{b,*}

 ^a Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China
^b Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, P.R. China

†Equal contribution

Corresponding author: Bao-Xiang Zhao, Jun-Ying Miao

Tel.: +86 531 88366425; fax: +86 531 88564464;

E-mail addresses: <u>bxzhao@sdu.edu.cn</u> (B.X. Zhao); <u>miaojy@sdu.edu.cn</u> (J.Y. Miao)

Fig. S1 Mechanism of copper ion inducing ring-open of probe 4

Fig. S2 Linear correlation between $\Delta A_{sat}/\Delta A$ -1 and $1/[Cu^{2+}]$ (R = 0.9965). ΔA are the absorbance change values of 10 μ M **4** in the presence of 0.05 – 9.0 equiv. Cu²⁺ ($Ka = 5.38 \times 10^4 \text{ M}^{-1}$).

Fig. S3 Job plot for determining the stoichiometry of **4** and Cu^{2+} . The total concentration of **4** and Cu^{2+} was 1×10^{-5} M. A_0 and A are the absorbance values of **4** in the absence of Cu^{2+} and **4** upon addition of different amounts of Cu^{2+} .

Fig. S4 Absorption spectra of 4 with 1.0 equiv. Cu^{2+} in buffered EtOH/HEPES solution at different concentrations. The inset shows the linear relation of the absorbance with Cu^{2+} concentration (R = 0.9951, $\varepsilon = 3.83 \times 10^4$ L mol⁻¹ cm⁻¹).

Fig. S5 Fluorescence intensity changes of 10 μ M **4** to 100 μ M of different metal ions in buffered EtOH/HEPES solution (black bars), and the subsequent addition of 10 μ M Cu²⁺ to above solutions (gray bars). (Excitation wavelength (λ_{ex}), 562 nm; slit width, 10 nm; emission wavelength (λ_{em}), 581 nm; slit width, 5.0 nm.)

Fig. S6 Linear correlation between the fluorescence intensity and Cu^{2+} concentration (R = 0.9951). Probe 4 10 μ M in the presence of various concentrations of Cu^{2+} ranging from 0.01–0.3 equiv.

Fig. S7 Fluorescence response of 10 μ M **4** to 100 μ M of CuNO₃, CuSO₄, CuAc₂, CuCl₂ (black bars), 10 μ M of CuNO₃ (light gray bar) and the mixture of 100 μ M of Na₂SO₄, NaAc, NaCl with 10 μ M of CuNO₃ (gray bars) in buffered EtOH/HEPES solution.

Fig. S8 The effect of pH (5.6 – 10.5) on the fluorescence intensity of 10 μ M probe **4** with 1.0 equiv. Cu²⁺ in buffered EtOH/HEPES solution. (Excitation wavelength (λ_{ex}),

562 nm; slit width, 10 nm; emission wavelength (λ_{em}), 578 nm; slit width, 5.0 nm.)

Fig. S9 Time course for the fluorescence response of 10 μ M **4** upon the addition of 1.0 equiv. Cu²⁺ in buffered EtOH/HEPES solution at room temperature.