Supporting Information

for

A water soluble Al³⁺ selective colorimetric and fluorescent turn-on chemosensor and its application in living cell imaging

Supriti Sen¹, Titas Mukherjee¹, Basab Chattopadhyay², Anuradha Moirangthem³, Anupam Basu³, Jaromir Marek⁴, Pabitra Chattopadhyay¹

¹Department of Chemistry, The University of Burdwan, Golapbag, Burdwan-713104, India

²Department of Solid State Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India

³Molecular Biology and Genetics Laboratory, Department of Zoology, The University of Burdwan, Golapbag, Burdwan-713104

⁴Laboratory of Functional Genomics and Proteomics, Institute of Experimental Biology, Masaryk University, Kamenice 5/A2, CZ-625 00 Brno, Czech Republic

Contents	Page No.
Supplimentary data of the 1-H and 2 Figures S1 – S2	2-3
Figure S3. UV–vis spectra of receptor $1-H$ with nitrate salt of Al^{3+}	4
Figure S4 Intensity of 1 in presence of different metal ions	4
Figure S5 Interference of different metal ions in presence of Al^{3+}	5
Figure S6. Partial ¹ H NMR titration of 1	6
Figure S7. Plot of cytotoxicity testing	7
Table S1& S2. Table for crystal data	8,9
Table S3Selectivity coefficient (k_{sc}) for Al^{3+} over competitive cations	10

Figure S1. ¹H NMR spectrum of **1-H** (DMSO- d_6 , 300 MHz). The signal marked with * and S are for H₂O and solvent peak(DMSO- d_6), respectively.

Figure S2. Mass spectrum of 2.

Figure S3. Absorption spectra of 12.5 μ M of **1-H** in presence of 0, 2.5, 5.0, 7.5, 12.5, 15, 17.5, 20, 22.5, 31.0, 62.5, 87.5 μ M of Al³⁺ and at high conc. , 40, 60, 80, 100, 120, 140, 160, 180, 200 times of Al³⁺ in DMSO/water (1/100) at 25°C temperature.

Fig.S4. Emission enhancement spectra of **1-H** (10 μ M) in presence of different metal ions (200 μ M) in 100 mM HEPES buffer solution.

Fig.S5. Interference of different metal ions (200 μ M) in presence of **1-H** (20 μ M) and Al³⁺ (20 μ M) in 100 mM HEPES buffer (DMSO/water : 1/100)

Fig.S6. Partial ¹H NMR titration (DMSO- d_6 , 400 MHz) (a) of **1-H**; (*coc.* = 3.5×10^{-3} M) (b) **1-H** + 0.5 equivalent and (c) **1-H** + 1 equivalent of Al(NO₃)₃,9H₂O.

Fig.S7. MTT assay for the determining cytotoxic effect of **1-H** which was incubated with HeLa cell for 18 hours in 24 wells plate. MTT was added and after 3 hours, absorbance was measured at 590 nm.

Empirical Formula	$C_{16}H_{13}NO_2$
Formula Weight	251.27
Crystal System	Monoclinic
Space group	P 21/c
a (Å)	9.7368(5)
b (Å)	9.5514(4)
c (Å)	13.8091(7)
α (°)	90.00
β (°)	107.501(5)
γ (°)	90.00
Volume (Å ³)	1224.80(11)
Temperature,K	120(2)
Z	4
ρ_{calc} (g/cm ³)	0.336
F (000)	528
μ (MoK _{α}) (mm ⁻¹)	0.090
Collected reflns	7887
Independent reflns	2156
R1 [I > 2.0 σ (I)]	0.0398
wR1 [I > 2.0 σ (I)]	0.1154
Goodness-of-fit	1.103

Table S1. Crystal data and details of refinements for 1-H

Bond distance	es (Å)	Bond angles (°)	
C14 - O15	1.348(2)	C14 - O15 - C16	105.25(15)
C11- N12	1.3098(19)	C11- N12 - C13	123.60(14)
O1- C2	1.2712(18)	01- C2 - C3	120.08(14)
C14 - C18	1.330(2)	C9 - C10 - C1	123.82(14)

Table S2. Selected bond distances (Å) and bond angles (°) for 1-H

Interfering metal	Selectivity	$log(k_{sc})$
ions	coefficient (k _{sc})	
Na ⁺	3447	3.5374
K ⁺	1407	3.1483
Mg ²⁺	1979	3.2964
Ca ²⁺	2476	3.3938
Cr ³⁺	991	2.9961
Cr ⁶⁺	5557	3.7449
Fe ³⁺	2477	3.3940
Co ²⁺	855	2.9320
Ni ²⁺	926	2.9667
Zn ²⁺	853	2.9310
Cu ²⁺	2088	3.3198
Cd^{2+}	860	2.9345
Hg^{2+}	924	2.9657
Pb ²⁺	2797	3.4467
Ag^+	2298	3.3614

Table S3. Selectivity coefficient (k_{sc}) for Al^{3+} over competitive cations

^aSelectivity coefficient (k) was calculated as $k_{B,A} = m_B/m_A$; where $m_B = d/dc(signal of B)$ and $m_A = d/dc(signal of A)$; dc = change of concentration of species; B = Al³⁺ and A = other interfering metal ion