A Colorimetric and Fluorescent Dual Probe for Specific Detection of Cysteine Based on Intramolecular Nucleophilic Aromatic Substitution

Limin Ma,^{§a} Junhong Qian,^{§a} Haiyu Tian,^a Minbo Lan*^{a,b} and Weibing Zhang*^a

^aShanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China

^bResearch Centre of Analysis and Test, Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China

E-mail: minbolan@ecust.edu.cn; weibingzhang@ecust.edu.cn

 $\$ L. Ma and Dr. J. Qian contributed equally to this work

Supporting Information

Contents

Effects of some thiols on the spectra of NNA2
ESI spectrum of the product of NNA reacted with Cys
Spectral changes of NNA-Cys system in the presence of acid / base4
Time-dependent absorption and emission spectra of NNA -Hcy5
Time-dependent absorption and emission spectra of NNA -MEA······6
Time-dependent HPLC spectra of NNA in the presence of Cys7
Effect of water content on the reaction between NNA and Cys
Temperature effect on the reaction between NNA and Cys9
Color change of NNA in the presence of different additives10

Figure S1 Absorption (A) and emission (B) spectra of **NNA** in the presence of different thiols in DMF. (a) none; (b) GSH; (c) N-acetyl-L-cysteine; (d) Mercapto-propionic acid; (e) Mercaptoethylamine; (f) Hcy; [**NNA**] = 20 μ M, [thiols] = 200 μ M, the spectra were recorded after equilibrated at 50 °C for 2 hours, λ_{ex} = 390 nm.

Figure S2 ESI-MS spectrum of the substituent product of **NNA** reacted with Cys (Anal. Calcd: 317.04).

Figure S3 Time-dependent absorption (A) and emission (B) spectra of NNA-Cys in the presence of 1 equiv of acid in DMF, and those of the further addition of 1 equiv of base (C and D). [NNA] = 20 μ M, [Cys] = 200 μ M, the spectra were recorded at 50 °C, $\lambda_{ex} = 390$ nm.

Figure S4 Time-dependent absorption (A, B) and emission (C, D) spectra of **NNA** in the presence of Hcy in DMF; [**NNA**] = 20 μ M, [Hcy] = 200 μ M, reacted at 50°C, $\lambda_{ex} = 390$ nm (C); $\lambda_{ex} = 435$ nm (D).

Figure S5 Time-dependent absorption (A, B) and emission (C, D) spectra of **NNA** in the presence of MEA in DMF; [**NNA**] = 20 μ M, [MEA] = 200 μ M, reacted at 50°C, $\lambda_{ex} = 390$ nm.

Figure S6 Time-dependent HPLC spectra of **NNA** in the presence of Cys. [**NNA**] = 250 μ M, [Cys] = 2.5 mM, UV detector with λ = 390 nm; Injection volume: 20 μ L; Mobile phase: A-water, B-acetonitrile; Gradient elution: 0-5min 35-75%B; 5-15min, 75-95%B; Flow rate: 1.0 mL min⁻¹.

Figure S7 Effect of water content on the absorption (A) and emission (B) spectra of NNA in the presence of Cys. [NNA] = 20 μ M, [Cys] = 200 μ M, incubated at 50°C for 3 hours, $\lambda_{ex} = 390$ nm.

Figure S8 Time-dependent absorption (A, B) and emission (C, D) spectra of NNA reacted with Cys in DMF at 25°C; [NNA] = 20 μ M, [Cys] = 200 μ M, λ_{ex} = 390 nm.

Figure S9 The color change of **NNA** in the absence and presence of 10 equiv different additives (A) and their corresponding emission spectra (B, $\lambda_{ex} = 435$ nm). [**NNA**] = 20 μ M, the samples were equilibrated at 50°C for 2 hours. (a) none; (b) Cys; (c) Hcy; (d) MEA; (e) GSH; (f) ME; (g) MPA; (h) NAC; (i) *n*-Butylamine; (j) Ala.