Supporting Information

for

Colorimetric detection of Copper ions in sub-micromolar concentrations using a triarylamine-linked resin bead

Tony George Thomas, Kesavapillai Sreenath and Karical R. Gopidas*

Photosciences and Photonics, Chemical Sciences and Technology Division, National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research (CSIR), Trivandrum 695 019, India

	Contents	Page
(1)	Cyclic voltammograms of Cu ²⁺ in ACN/water mixtures	S2
(2)	Plot of redox potential of Cu ²⁺ /Cu ⁺ vs. water content in ACN	S 3
(3)	Effect of addition of water to ETPA ⁺⁺ solution in ACN	S4
(4)	Photograph of ETPA solutions in the presence of varying amounts of Cu ²⁺ .	S 5
(5)	Plot showing the interference of other metal ions	S 5
(6)	Photograph showing the reusability of the device	S6
(7)	Photograph of Tentagel without ETPA after treatment with Cu^{2+}	S6
(8)	Photograph of the device dipped in millimolar solutions of various metal ions in ACN/water mixtures	S7

Figure S1. Cyclic voltammograms of Cu²⁺ in ACN/water mixtures

The plot shows addition of water to a solution containing 3×10^{-5} M ETPA and 1 equiv of Cu²⁺.

Figure S4. Photograph of ETPA solutions in the presence of varying amounts of Cu²⁺

 Cu^{2+} concentrations were 0, 0.25, 0.5. 0.75, and 1.0 equiv for solutions 1-5.

Figure S5. Plot showing the interference of other metal ions

Plot (a) shows the change in absorbance when Cu^{2+} is added to a solution ETPA + 5 Metal ions $(Co^{3+}, Cd^{2+}, Pb^{2+}, Fe^{2+}, Na^+)$. Plot (b) shows the change in absorbance when Metal ions $(Co^{3+}, Cd^{2+}, Pb^{2+}, Fe^{2+}, Na^+)$ are added to solution of ETPA + Cu^{2+} .

Figure S6. Photograph showing the reusability of the device

The Photograph shows the device dipped in ACN solution in the 21^{st} run (the second method as described in the "Device for naked eye detection of Cu²⁺ in water" section of the manuscript was employed).

Figure S7. Photograph of Tentagel without ETPA after treatment with Cu²⁺

Figure S8. Photograph of the device dipped in millimolar solutions of various metal ions in ACN/water mixtures

