Supporting Information for

A new, highly water-soluble, fluorescent turn-on chemodosimeter for direct measurement of hydrogen sulfide in biological fluids

Matthew C. T. Hartman^{ab} and M. Michael Dcona^{ab}

^aDepartment of Chemistry, Virginia Commonwealth University, 1001 West Main Street, P. O. Box 842006, Richmond, Virginia 23284

^bMassey Cancer Center, VCU, 401 College Street, Richmond, Virginia 23298

Sections:

I.	Materials	.S2
II.	Synthesis	.S2
III.	Analytical Methods	.S2
IV.	Supplementary Tables and Figures	.S4
V.	Reference:	S6
VI.	¹ H and ¹³ C NMR spectra for N ₃ -PTS	.S7

I. Materials.

All reagents were purchased from Sigma-Aldrich, Fisher Scientific or TCI America unless otherwise specified and were used as received. Reactions were carried out in foil-wrapped flasks protected from light. The precursor to N_3 -PTS, triammonium 8-aminopyrene-1,3,6-trisulfonic acid, was prepared in one step from 1-aminopyrene as described¹.

II. Synthesis.

Triammonium 8-azidopyrene-1,3,6-trisulfonate (N₃-PTS). A solution of triammonium 8aminopyrene-1,3,6-trisulfonate (100 mg, 0.22 mmol) was dissolved in ice cold 3.6 N H₂SO₄ (500 µL) in a foil wrapped flask on ice. An aqueous solution of 0.66 M NaNO₂ (1 mL, 3 eq) was added dropwise over 10 min. A solution of ice cold 1.1 M sodium azide (1.2 mL, 6 eq) was added dropwise over 10 min. The reaction was stirred on ice for an additional 40 min and was quenched with 0.5 mL concentrated NH₄OH. The solution was concentrated via rotary evaporation and purified using a Biogel P-2 column (1.5 x 80 cm), eluted with 50 mM aq NH₄OAc at a flow rate of 0.15 mL/min. The fractions containing the product were combined and lyophilized giving a fluffy yellow powder (79 mg, 75%). IR v_{max}/cm^{-1} (3435m, 3180s, 3199s, 2870m, 2113s (N₃ stretch), 1625w, 1416s, 1161s, 1115s, 1036s, 998s, 733m, 653s, 604s). ¹H NMR (400 MHz, D₂O): δ = 9.23 (s, 1H), 9.21 (d, 1H, *J* = 9.8 Hz), 9.11 (d, 1H, *J* = 9.8 Hz), 9.10 (d, 1H, *J* = 9.7 Hz), 8.73 (d, 1H, *J* = 9.7 Hz), 8.64 (s, 1H). ¹³C NMR (150 MHz, D₂O) 139.05 (q), 135.90 (q), 130.43 (q), 129.71 (q), 127.73 (C-H), 125.68 (C-H), 125.51 (q), 125.20 (C-H), 124.87 (C-H), 124.76 (C-H), 123.44 (q), 123.40 (q), 116.60 (C-H). HRMS (ESI) C₁₆H₇N₃O₉S₃ calculated [M – 2H]²⁻ = 240.4677; Observed = 240.4678.

III. Analytical Methods.

Fluorescence spectra. Fluorescence spectra were recorded with a Cary Eclipse Fluorescence Spectrophotometer (Agilent Technologies, Inc.) at ambient temperature and under ambient atmosphere. Samples were contained in black, flat-bottomed 96 well plates. The PMT setting was 600 V for all readings. For samples containing H₂S, the plate was sealed immediately after addition of a NaHS solution of the appropriate concentration. Fluorescence readings were taken either with the seal removed

S2

or with optically clear sealing tape intact. Readings taken in FBS had a final FBS concentration of 90%, with the remaining 10% aqueous solution containing the fluorophore and NaHS.

UV-Vis Absorbance. UV-Vis Absorbance spectra were recorded on a Hewlett Packard 8453 UV-visible Spectroscopy Systems instrument in disposable UV cuvettes (BrandTech) (Quantum yield measurements) or using a Nano-Drop 2000 spectrophotometer (UV-Vis absorbance profile and Beer's Law readings).

IR. IR readings were taken on a Nicolet Avatar 360 FT-IR.

NMR. ¹H NMR spectra were recorded on a Bruker 400 MHz NMR. ¹H NMR spectra were calibrated to the D₂O solvent peak which was set to 4.79 ppm. ¹³C NMR spectra were recorded on a 600 MHz Bruker Advance III instrument using the attached proton test. ¹³C NMR spectra in D₂O were calibrated using methanol as an internal standard set to 49.50 ppm. Even using this high field instrument there were indistinguishable ¹³C peaks for N₃-PTS. Observed peaks were reported. **MS.** Mass spectra were acquired on a LTQ-Orbitrap Velos from Thermo Electron Corporation operating in negative ion mode.

IV. Supplementary Figures and Tables.

Fig. S1. Absorbance vs. concentration plots of APTS and N_3 -PTS at various wavelengths in water. Absorbance parameters (Table S1) were calculated using Beer's law.

Table S1.	Calculated	absorbance	coefficients	of APTS	and N ₃ -P	TS in water
-----------	------------	------------	--------------	---------	-----------------------	-------------

Wavelength	$\varepsilon N_3 PTS (M^{-1} cm^{-1})$	ε APTS (M ⁻¹ cm ⁻¹)	ϵ APTS/N ₃ PTS
382 nm	12600	6750	0.54
424 nm	806	11500	14.3
436 nm	241	10300	42.7
451 nm	180	7050	39.2

Fig. S2. Relative quantum yield measurement of APTS and N₃-PTS. Fluorescence spectra were obtained with λ_{ex} = 425 nm.

Compound	Slope	Relative Quantum Yield
APTS	1.54 x 10 ⁷	24.3
N₃-PTS	6.33 x 10 ⁵	

Table S2. Relative Quantum Yield Measurement

Fig. S3. Reaction of H₂S at various concentrations with N₃-PTS. The reaction was monitored at 505 nm (λ_{ex} = 435 nm), and readings were taken at 1 minute intervals.

Fig. S4. Comparison of the fluorescence of N₃-PTS after incubation in 50 mM phosphate buffer (pH 7.8) along with with NaHS (50 μ M) or NaOCI, Sodium Diethylamine NONOate, or tBuOOH (all 1 mM). Fluorescence emission (λ_{ex} = 435 nm) was measured after 90 min.

Fig. S5. Comparison of fluorescence intensity ($\lambda_{ex} = 450 \text{ nm}$) of APTS at various concentrations in either phosphate buffer or Serum (FBS).

V. Reference:

1 Z. Sharrett, S. Gamsey, L. Hirayama, B. Vilozny, J. T. Suri, R. A. Wessling and B. Singaram, *Org. Biomol. Chem.*, 2009, **7**, 1461-1470.

Electronic Supplementary Material (ESI) for Analyst This journal is © The Royal Society of Chemistry 2012

