Characterisation of an intrinsically disordered protein complex of Swi5-Sfr1 by ion mobility mass spectrometry and small-angle X-ray scattering

Kazumi Saikusa¹, Naoyuki Kuwabara², Yuichi Kokabu¹, Yu Inoue¹, Mamoru Sato¹, Hiroshi Iwasaki³, Toshiyuki Shimizu², Mitsunori Ikeguchi¹, and Satoko Akashi¹*

- 1. Graduate School of Nanobioscience, Yokohama City University
- 2. Graduate School of Pharmaceutical Sciences, University of Tokyo
- 3. Graduate School of Bioscience & Biotechnology, Tokyo Institute of Technology

Electronic Supplementary Information

- 1. Building of a low-resolution model from X-ray structure
- 2. Examination of the CCS-calibration method
- 3. Analysis of CCS of the multiply-charged ions of Sfr1 and Sfr1C

<u>1. Building of a low-resolution model from X-ray structure</u>

	T		Molecular	# of
Protein name	Taxonomy	PDB entry	weight /kDa	Subunit
Ubiquitin	Homo sapiens	1UBQ	8.6	1
Cyrochrome C	Equus caballus	1HRC	12.4	1
Lysozyme	Gallus gallus	1DPX	14.4	1
Calmodulin	Rattus rattus	3CLN	16.9	1
Myoglobin	Physeter catodon	1VXG	17.9	1
Calmodulin	Homo sapiens	1WRZ	19.4	1
Swi5-Sfr1C	Schizosaccharomyces pombe	3VIR	23.9	2
Trypsinogen	Bos taurus	1TGN	24.0	1
Carbonic anhydrase I	Homo sapiens	1AZM	29.1	1
Lipase	Burkholderia cepacia	3LIP	33.2	1
Ovalbumin	Gallus gallus	1UHG	43.5	1
Transthyretin	Homo sapiens	1F41 ^a	55.2	4
Avidin	Gallus gallus	1VYO ^a	58.6	4
Human serum albumin	Homo sapiens	1BJ5	67.7	1
Actin	Oryctolagus cuniculus/	1ATN	71.8	2
	Bos Taurus			
Conalbumin	Gallus gallus	10VT	76.2	1

Table S1. Proteins subjected to construction of low-resolution dummy residue models

Drotain name	Taxonomy	DDD ontry	Molecular	# of
Floteni name	Taxonomy	PDB entry	weight /kDa	Subunit
Creatine kinase	Homo sapiens	3B6R	86.2	2
Toroponin	Homo sapiens	1J1D	93.1	6
Concanavalin A	Canavalia ensiformis	1GKB ^a	103	4
Lactate dehydrogenase A	Oryctolagus cuniculus	3H3F	150	4

^a Multimers were generated using symmetry information within a distance of 4 Å, obtained from the program PyMOL.

Fig. S1. Plots of (A) theoretical SAXS profile of the Swi5-Sfr1C complex obtained by CRYSOL and (B) pair-distance distribution function ([P(r)]) of the Swi5-Sfr1C complex.

2. Examination of the CCS-calibration method

Two calibration methods were examined. The first method used multiply-charged molecules of acid-denatured equine cytochrome c and equine myoglobin,¹⁻⁴ and the second method used multiply-charged protein molecules in native-like states, namely equine cytochrome c, bovine β -lactoglobulin A, egg avidin, bovine serum albumin, jack-bean

concanavalin A, human serum amyloid P, and yeast alcohol dehydrogenase, as reported by Bush et al.⁴ A best fit power trendline ($y = ax^b$) of the corrected ATs versus the corrected published CCSs was obtained as a calibration curve for each calibrant set. The experimental CCSs of the Swi5-Sfr1 and the Swi5-Sfr1C complexes were calculated based on the equations of the calibration plots.

C	omplexes.						
	Experimental CCS/Å ² The calibration by		Structural analysis	Calculated CCS by MOBCAL			
				(a) PA	(b) Scaled	(c) FHSS	(d)
	Acid- denatured proteins	Native- like proteins	method	$\begin{array}{c} \text{method} \\ / \mathring{A}^2 \end{array}$	PA value (a)×1.14/Å ²	method /Å ²	TM /Å ²
Swi5-Sfr1C complex	2110 ^a (2640) ^b	1950 ^a (2430) ^b	X-ray	2401	2737	3034	2975
			SAXS	2428 ± 21	2768	_ c	_ c
Swi5-Sfr1 complex	3130 ^a	2880 ^a	SAXS	4879 ± 71	5562	_ c	_ c

Table S2. Experimental and theoretical CCSs of the Swi5-Sfr1 and the Swi5-Sfr1C complexes.

^a The experimental CCS values for the low charged ions (9+ for Swi5-Sfr1C and 13+ for Swi5-Sfr1) that were dominantly observed in the ESI mass spectra.

^b The experimental CCS value for the 11+ charged ion (minor peak) of Swi5-Sfr1C, the intensity of which was about 40% of the main peak.

^c Not available due to the absence of the atomic-level structure.

When a calibration curve obtained with globular protein calibrants was applied to the Swi5-Sfr1C and Swi5-Sfr1 complexes, ~10% smaller CCS values were obtained for the complexes compared with the CCS values obtained by calibration with acid-denatured proteins. Since SAXS analysis suggested elongated molecular shapes of the Swi5-Sfr1 and the Swi5-Sfr1C complexes (as discussed in text), we selected calibration with acid-denatured proteins.

3. Analysis of CCS of the multiply-charged ions of Sfr1 and Sfr1C

Fig. S2. ESI-IM-MS data of the Swi5-Sfr1 complex in 0.5 M NH₄OAc. (A) Mass spectrum of the Swi5-Sfr1 complex (*m/z* 800-4000), and (B) experimental CCS distributions of Sfr1.
Red arrows in panel A indicate multiply-charged molecules of Sfr1. Ions of Sfr1 with charges in the range of 11+ to 40+ were observed. Panel B shows the CCS distribution of each ion of Sfr1. Three CCS values in panel B correspond to those for ions at the charge states of 11+, 24+ and 33+, respectively.

Since Sfr1 is expected to have a long disordered region, it is difficult to characterise the free-form structure by conventional analytical methods. However, in the present study, the CCS values of the free Sfr1 ions with various charges were obtained by ESI-IM-MS without isolation of the free Sfr1 protein. This presents a great advantage of ESI-IM-MS for the structural analysis of protein complexes containing ID regions.

Fig. S3. ESI-IM-MS data of the Swi5-Sfr1C complex in 0.5 M NH₄OAc. (A) Mass spectrum of the Swi5-Sfr1C complex (*m/z* 700-3500), and (B) experimental CCS distributions of Sfr1C. Red arrows in panel A indicate multiply-charged molecules of Sfr1C. Ions of Sfr1C with charges in the range of 5+ to 19+ were observed. Panel B shows the CCS distribution of each ion of Sfr1C. Two CCS values in panel B correspond to those for ions at the charge states of 7+ and 15+, respectively.

References

- B. T. Ruotolo, J. L. P. Benesch, A. M. Sandercock, S. J. Hyung, C. V. Robinson, *Nat. Protoc.*, 2008, 3, 1139-1152.
- 2. D. E. Clemmer, Cross Section Database, http://www.indiana.edu/~clemmer.
- 3. K. B. Shelimov, D. E. Clemmer, R. R. Hudgins, M. F. Jarrold, J. Am. Chem. Soc., 1997, 119, 2240-2248.
- 4. M. F. Bush, Z. Hall, K. Giles, J. Hoyes, C. V. Robinson, B. T. Ruotolo, Anal. Chem., 2010, 82, 9557-9565.