Supporting Information

Metal-Organic Framework Templated Synthesis of Co₃O₄ Nanoparticles for

Direct Glucose and H₂O₂ Detection

Chuantao Hou, Qin Xu, Lina Yin and Xiaoya Hu^{*}

College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China

Email: xyhu@yzu.edu.cn

Fig. S1 FT-IR spectrum of the as-synthesized Co₃O₄ NPs.

Fig. S2 PXRD patterns of the Co₃O₄ NPs (a), and Co₃O₄@ZnO before dissolution of the zinc oxide (b).

Fig S3 Effects of NaOH concentration on the amperometric responses of the proposed GCE for 10µM glucose.

Fig. S4 Amperometric response of the Co_3O_4 NPs modified GCE on successive injection of 0.2 mM glucose at different stages and for the addition of 0.02 mM UA, 0.02 mM AP, and 0.02 mM AA to the solution of 0.1 M NaOH.

Fig. S5 Amperometric responses of the Co_3O_4 NPs modified GCE to successive injection of 0.2mM glucose in 0.1M NaOH and 0.1M NaOH containing 0.1 M NaCl, respectively.

Fig. S6 Amperometric response of the Co_3O_4 NPs modified GCE with successive additions of glucose solution and serum sample.