Supplementary Information to

Selective fluorometric detection of pyrophosphate by 3-hydroxyflavonediphenyltin(IV) complex in aqueous micellar medium

Raul Villamil-Ramos^a, Víctor Barba López^b and Anatoly K. Yatsimirsky^{a,*}

^a Facultad de Química, Universidad Nacional Autónoma de México, 04510 México D.F., México.
E-mail: anatoli@unam.mx ^b Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, 62209,
Cuernavaca, Morelos, México

Figure 1S. Absorption spectra of 50 μ M flavonol in 5 mM CTAC at variable pH 5.9-10. Arrows show the direction of spectral changes on increase in pH.

Figure 2S. Fluorometric titration of 10 μ M **2** with 5 μ M PPi alone (solid circles), mixture of 5 μ M PPi and 10 μ M ATP (open squares) and mixture of 5 μ M PPi and 50 μ M ATP (solid squares) in 5 mM CTAC at pH 6.5.

Figure 3S. Spectrophotometric titration of 40 μ M flavonol by Me₂SnCl₂ in 5 mM CTAC at pH 6.5.

Figure 4S. Spectrophotometric titration of 40 µM flavonol by PhSnCl₃ in 5 mM CTAC at pH 6.5.

Figure 5S. Spectrophotometric titration of 40 μ M flavonol by *n*-BuSnCl₃ in 5 mM CTAC at pH 6.5.