Insights into Electrochemiluminescent enhancement through electrode surface modification.

Emmet J. O'Reilly, Tia E. Keyes, Robert J. Forster* and Lynn Dennany*

[†]Centre for Forensic Science, Department of Pure & Applied Chemistry, University of Strathclyde, Royal College, 204 George Street, Glasgow, G1 1XW, Scotland. Fax: +141 548 2532; Tel: +141 548 4322; E-mail: <u>lynn.dennany@strath.ac.uk</u> National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9, Ireland. Fax: +353 1 7005503; Tel: +353 1 7005943; Email: Robert.Forster@dcu.ie

Figure S1: Randles-Sevçik respone for a thin film of $[Ru(bpy)_2(PVP)_{10}]^{2+}$. The supporting electrolyte was 0.1 M LiClO₄. $\Gamma = 7 \times 10^{-8}$ molcm⁻². Analysis was performed at pH 6.0.

Figure S2: Typical photoluminescence (blue line) and ECL spectrum (red line) of a $[Ru(bpy)_2(PVP)_{10}]^{2+}$ film in contact with a solution containing 0.1 M H₂SO₄ and 0.5 mM C₂O₄²⁻. An excitation wavelength of 355 nm was utilised.