Supporting Information

Fenton reagent-tuned DNA-Ag fluorescent nanoclusters as a versatile fluorescence probe and logic device

Li-Pei Zhang, Xiao-Xing Zhang, Bo Hu, Li-Ming Shen, Xu-Wei Chen*, Jian-Hua Wang* Research Center for Analytical Sciences, Colleges of Sciences, Northeastern University, Box 332, Shenyang 110819, China

Figure S1 CD spectra of the following solutions at pH 7. a: DNA (10 μ M); b: DNA (5 μ M) + AgNO₃ (30 μ M); c: DNA-Ag NCs (0.1X); d: DNA-Ag NCs (0.1X) + 5 μ M Cu²⁺; e: DNA-Ag NCs (0.1X) + 5 μ M Cu²⁺ + 5 μ M AA; f: DNA-Ag NCs (0.1X) + 5 μ M Cu²⁺ + 5 μ M AA; f: DNA-Ag NCs (0.1X) + 5 μ M Cu²⁺ + 5 μ M AA + 1 mM H₂O₂.

Sample	τ_1 / ns	A ₁ / %	τ_2 / ns	$A_1^{/}$ %	χ^2	τ / ns
1	0.36	46.82	2.46	53.18	1.139	0.66
2	0.54	41.4	2.5	58.6	1.095	0.99
3	0.46	44.74	2.48	55.26	0.842	0.84
4	0.41	48.13	2.43	51.87	1.288	0.71
5	0.66	39.58	2.64	60.42	0.82	1.21
6	0.27	44.59	2.44	55.41	1.265	0.54
7	0.29	48.69	2.40	51.31	1.221	0.53
8	0.19	51.32	2.43	48.68	1.33	0.34

Table S1 Fitted decay lifetime components for DNA-Ag NCs and Fenton reagent.

(1) DNA-Ag NCs (0.03X), (2) DNA-Ag NCs (0.03X) + 1 μ M Cu²⁺, (3) DNA-Ag NCs (0.1X) + 5 μ M Cu²⁺ + 1 μ M AA, (4) DNA-Ag NCs (0.03X) + 1 mM H₂O₂, (5) DNA-Ag NCs (0.03X) + 1 μ M Cu²⁺ + 1 μ M AA, (6) DNA-Ag NCs (0.03X) + 1 μ M Cu²⁺ + 1 mM H₂O₂, (7) DNA-Ag NCs (0.03X) + 1 μ M AA + 1 mM H₂O₂, (8) DNA-Ag NCs (0.03X) + 1 μ M Cu²⁺ + 1 μ M AA + 1 mM H₂O₂.

All the data were analyzed using the multi-exponential model described by Equation 1:

$$I(t) = \sum_{i=1}^{n} \alpha_i \exp\left(-\frac{t}{\tau_i}\right)$$

Where τ_i is the decay time, α_i is the amplitude of the components at t = 0, and n is the number of decay time. The resulting decay time τ_i , their fractional contributions Ai, the average decay lifetime τ (calculated from Equation 2), and the value of the goodness-of-fit parameter χ^2 , are summarized in Table S1.

$$\overline{\tau} = \frac{\sum_{i=1}^{n} \alpha_i \tau_i^2}{\sum_{i=1}^{n} \alpha_i \tau_i}$$