Supporting Information

Design and Synthesis of Triazolyl Coumarin as a Selective Fluorescent Chemosensor for Hg²⁺

I-Ting Ho,[†] Ting-Ling Lai[†] Ren-Tsung Wu,[†] Ming-Tsung Tsai, Chun-Ming Wu and Wen-Sheng Chung^{*}

Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30050 E-mail: <u>wschung@nctu.edu.tw</u>

[†]Coauthors contributed equally to this work.

Table of Contents

Page No.	Contents				
S2 - S6	Experimental section				
S7 – S12	Figures S1–S12. ¹ H-, ¹³ C-NMR, and DEPT spectra of compounds L1, L2,				
	L3 and L4 .				
S13	Figure S13. UV-Vis spectrum of (a) L1 , (b) L2 and (c) L3 (20 μ M) by the addition of 10 equiv of various metal perchlorates (Li ⁺ , Na ⁺ , K ⁺ , Mg ²⁺ , Ca ²⁺ , Ba ²⁺ , Cr ³⁺ , Mn ²⁺ , Ni ⁺ , Cu ²⁺ , Zn ²⁺ , Hg ²⁺ , Ag ⁺ , Cd ²⁺ , and Pb ²⁺) in				
	MeOH-CHCl ₃ (9:1, v/v).				
	Figure S14. UV-Vis spectrum of L3 (20 μ M) with various equiv of Hg(ClO ₄) ₂ in MeOH-CHCl ₃ (9:1, v/v).				
S14	Figure S15. The ESI-MS spectrum of L3 by adding 1 equiv of $Hg(ClO_4)_2$. Figure S16. UV-Vis spectrum of L4 (20 μ M) by the addition of 10 equiv of various metal perchlorates in MeOH-CHCl ₃ (9:1, v/v).				
S15	Figure S17. Percentage fluorescence intensity changes of L4 by the				
	addition of 10 equiv of various metal in MeOH/CHCl ₃ (9:1, v/v).				
	Figure S18. UV-Vis spectrum of L4 (20 μ M) with various equiv of				
	$Hg(ClO_4)_2$ in MeOH-CHCl ₃ (9:1, v/v).				
S16	Figure S19. Fluorescence decay profiles and the distribution of weighted residuals for the single or bi-exponential function of L3 with $Hg(ClO_4)_2$.				
S17	Figure S20. Fluorescence decay profiles and the distribution of weighted residuals for the single or bi-exponential function of L4 with $Hg(ClO_4)_2$.				
S18	Figure S21. The FT-IR spectra of L3 and its complex with $Hg(ClO_4)_2$.				
	Figure S22. The X-ray crystal structures of L1 (110634LT_0m) and L3				
	(IC12713).				
S19	Table S2. Crystal data and structure refinement for L1 (110634LT 0m).				
S20	Table S3. Crystal data and structure refinement for L3 (ic12713).				

Experimental section

General methods

¹H NMR spectra were measured with either a 300 MHz or 600 MHz spectrometers. Natural abundance ¹³C NMR spectra were measured using pulse Fourier transform, with a 300 MHz NMR spectrometer operating at 75.4 MHz. All reported yields were from an average of three runs and were based on uncovered starting materials.

Synthetic procedures

Synthesis of 3-(4-((4-tert-butylphenoxy)methyl)-1H-1,2,3-triazol-1-yl)-7-methoxycoumarin (L1).

A mixture of 4-*tert*-butylphenyl propargyl ether (75 mg, 0.40 mmol) and coumarin **1** (90 mg, 0.41 mmol) in THF and water (v/v = 2:1, 30 mL) was added CuI (5 mg, 0.03 mmol). The heterogeneous mixture was stirred vigorously for 24 h. The solvent was removed under a vacuum, and the residue was re-dissolved in chloroform and washed with water. The chloroform solution was dried over MgSO₄ and evaporated to give the solid crude product. Column chromatography on silica gel eluting with hexane/ethyl acetate (v/v = 1/1) as eluent to give 87 mg (52%) of **L1**: mp 183-185 °C; R_f 0.30 (hexane/ethyl acetate = 4/1); ¹H-NMR (300 MHz, CDCl₃) $\delta_{\rm H}$ 8.68 (s, 1H; coumarin-*H*), 8.53 (s, 1H; C*H* of triazole), 7.57 (d, *J* = 8.7 Hz, 1H; coumarin-*H*), 7.35–7.29 (m, 2H; Ph-H), 7.01–6.88 (m, 4H; Ph-*H* and coumarin-*H*), 5.27 (s, 2H; C*H*₂-O), 3.92 (s, 3H; OCH₃), 1.30 (s, 9H; C(CH₃)₃); ¹³C-NMR (75.4MHz, CDCl₃) $\delta_{\rm C}$ 163.8 (Cq), 155.7 (Cq), 156.1 (Cq), 155.9 (Cq), 154.7 (Cq), 144.4 (Cq), 143.9 (Cq), 133.9 (CH), 129.9 (CH), 126.3 (CH), 123.8 (CH), 120.2 (Cq), 114.2 (Cq), 114.0 (CH), 111.4 (Cq), 100.7 (CH), 61.7 (CH₂), 56.0 (CH₃), 34.1 (Cq), 31.5 (CH₃); EI-MS m/z 405 [M]⁺; HRMS (EI) calcd for C₂₃H₂₃N₃O₄ 405.1689, found 405.1690.

X-ray crystal data. $C_{23}H_{23}N_3O_4$; M = 405.44; T = 100(2) K; triclinic; a = 5.933(3) Å, b = 11.085(6) Å, c = 15.588(8) Å, $\alpha = 93.50(2)^{\circ}$, $\beta = 92.85(2)^{\circ}$, $\gamma = 93.01(2)^{\circ}$, V = 1020.4(9) Å³; space group Pī; Z = 2; $\rho_{calcd} = 1.320$ mg m⁻³; crystal dimensions $0.17 \times 0.15 \times 0.06$ mm³; λ (Mo K_{α}) = 0.71073 Å; $\mu = 0.092$ mm⁻¹; 13644 reflections collected; 4137 independent reflections [$R_{int} = 0.0764$]; 275 parameter refined on F²; $R_1 = 0.0763$, wR2[F²] = 0.1373 (all data); GOF on F² 0.973, $\Delta \rho_{max} = 0.373$ eÅ⁻³. CCDC 870923 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.

Synthesis of 3-azidomethyl-7-methoxycoumarin (3).

To a solution of 3-bromomethyl-7-methoxycoumarin 2 (270 mg, 1 mmol) in acetone (15 mL) was added NaN₃ (131 mg, 2 mmol). The reaction mixture was refluxed for 1 h. The residual NaN₃ was filtered out and the filtrate was washed with water and extracted with CHCl₃ (10

mL × 3). The combined organic layer was dried over anhydrous MgSO₄ and evaporated to dryness affording 226 mg (98%) of **3** as a cream-color solid: mp 104–105 °C; R_f 0.19 (CH₂Cl₂/n-Hexane = 2:1); ¹H NMR (CDCl₃, 300 MHz) $\delta_{\rm H}$ 7.69 (s, 1H; coumarin-*H*), 7.41 (d, J = 8.5 Hz, 1H; coumarin-*H*), 6.90–6.84 (m, 2H; coumarin-*H*), 4.34 (2H; CH₂-N₃), 3.89 (s, 3H; OCH₃); ¹³C NMR (CDCl₃, 75 MHz) δ_c 162.9 (Cq), 160.9 (Cq), 155.3 (Cq), 140.4 (CH), 128.9 (CH), 120.0 (Cq), 113.0 (CH), 112.3 (Cq), 100.6 (CH), 55.8 (CH₃), 50.0 (CH₂); EI-MS m/z 231 [M]⁺; HRMS (EI) calcd for C₁₁H₉N₃O₃ 231.0644, found 231.0652.

Synthesis of 3-((4-((4-tert-butylphenoxy)methyl)-1H-1,2,3-triazol-1-yl)methyl)-7- methoxy-

courmarin (L2).

3-Azidomethyl-7-methoxycoumarin 3 (231 mg, 1 mmol) was added to the suspension of 4-tert-butylphenyl propargyl ether (188 mg, 1 mmol) and CuI (20 mg, 0.11 mmol) in THF/H₂O (8 mL, v/v = 3:1). The reaction mixture was vigorously stirred at 40 °C for 3 h. Acetone (20 mL) was added to the resulting suspension for dissolving organic compound, and the insoluble inorganic precipitate was then filtered out. The filtrate was washed with water (20 mL) and extracted with $CHCl_3$ (15 mL \times 3). The combined organic layer was dried over anhydrous MgSO₄ and evaporated to give a pale gray solid. The crude product was further purified by column chromatography on silica gel ($Et_2O/CH_2Cl_2 = 1:15$) to afford 360 mg (85%) of L2 as a white solid: mp 145–147 °C; $R_f 0.47$ (Et₂O/CH₂Cl₂ = 1:5); ¹H NMR(CDCl₃, 300 MHz) $\delta_{\rm H}$ 7.91 (s, 1H; CH of triazole), 7.66 (s, 1H; coumarin-H), 7.36 (d, J = 8.6 Hz, 1H; coumarin-*H*), 7.32–7.29 (m, 2H; Ph-*H*), 6.95–6.90 (m, 2H; Ph-*H*), 6.86 (dd, J_1 = 8.6 Hz, J_2 = 2.4 Hz, 1H; coumarin-H), 6.82 (d, J = 2.4 Hz, 1H; coumarin-H), 5.44 (s, 2H; CH₂-O), 5.19 (s, 2H; CH₂-triazole), 3.88 (s, 3H; OCH₃), 1.27 (s, 9H; C(CH₃)₃); ¹³C NMR (CDCl₃, 75 MHz) δ_c 163.4 (Cq), 161.1 (Cq), 155.9 (Cq), 155.7 (Cq), 143.9 (Cq), 142.7 (CH), 129.3 (CH), 126.3 (CH), 118.9 (Cq), 114.2 (CH), 113.2 (CH), 112.1 (Cq), 100.7 (CH), 62.0 (CH₂), 55.9 (CH₃), 49.2 (CH₂), 34.1 (Cq), 31.5 (CH₃); EI-MS m/z 419 $[M]^+$; HRMS (EI) calcd for C₂₄H₂₅N₃O₄ 419.1845, found 419.1844.

Synthesis of 3-azidoacetyl-7-methoxycoumarin (5).

A solution of 3-bromoacetyl-7-methoxycoumarin **4** (297 mg, 1 mmol) in acetone (75 mL) was treated with NaN₃ (195 mg, 3 mmol). The reaction mixture was refluxed for 2.5 h. The residual NaN₃ was subsequently filtered off, and the filtrate was concentrated under reduced pressure to give a dark brown solid. It was re-dissolved with CHCl₃ (25 mL) and washed with water (10 mL × 3). The organic layer was dried over anhydrous MgSO₄ and evaporated into dryness to yield a brown solid. The crude product was then washed with an appropriate amount of MeOH to afford 226 mg (87%) of **5** as a pale brown solid: mp 158–160 °C (CHCl₃); *R_f* 0.21 (CH₂Cl₂/n-Hexane = 2:1); ¹H NMR (CDCl₃, 300 MHz) $\delta_{\rm H}$ 8.65 (s, 1H; coumarin-*H*), 7.60 (d, *J* = 8.8 Hz, 1H; coumarin-*H*), 6.94 (dd, *J₁* = 8.8 Hz, *J₂* = 2.4 Hz, 1H;

coumarin-*H*), 6.84 (d, J = 2.4 Hz, 1H; coumarin-*H*), 4.70 (s, 2H; CH₂-N₃), 3.93 (s, 3H; OCH₃); ¹³C NMR (CDCl₃, 75 MHz) δ_c 191.0 (Cq), 166.0 (Cq), 159.5 (Cq), 158.0 (Cq), 149.4 (CH), 131.9 (CH), 118.0 (Cq), 114.4 (CH), 111.9 (Cq), 100.4 (CH), 58.6 (CH₂), 56.2 (CH₃); EI-MS m/z 259 [M]⁺; HRMS (EI) calcd for C₁₂H₉N₃O₄ 259.0593, found 259.0598.

Synthesis of 3-(2-(4-((4-tert-butylphenoxy)methyl)-1H-1,2,3-triazol-1-yl)acetyl)-7-methoxy-

coumarin (L3).

3-Azidoacetyl-7-methoxycoumarin 5 (259 mg, 1 mmol) was added to the suspension of 4-tert-butylphenyl propargyl ether (188 mg, 1 mmol) and CuI (20 mg, 0.11 mmol) in THF/H₂O (8 mL, v/v = 3:1). The reaction mixture was vigorously stirred at 40 °C for overnight. Hot CHCl₃ (50 mL) was added to the resulting suspension for dissolving the organic compound. The insoluble inorganic precipitate was filtered off in vacuum, and the filtrate was then washed with water (10 mL \times 3). The organic layer was dried over anhydrous MgSO₄ and concentrated under reduced pressure to give a pale yellow solid. The crude product was further purified by column chromatography on silica gel ($Et_2O/CH_2Cl_2 = 1:9$) to give 319 mg (71%) of **L3** as a milk white solid: mp 260–262 °C; $R_f 0.40$ (Et₂O/CH₂Cl₂ = 1:9); ¹H NMR (CDCl₃, 300 MHz) $\delta_{\rm H}$ 8.63 (s, 1H; H_e), 7.71 (s, 1H; H_e), 7.61 (d, J = 8.8, 1H; H_d), 7.33–7.26 (m, 2H; H_i), 6.98–6.93 (m, 3H; H_c and H_i), 6.88 (d, J = 2.3, 1H; H_f), 5.94 (s, 2H; H_{b}), 5.25 (s, 2H; H_{b}), 3.95 (s, 3H; H_{a}), 1.28 (s, 9H; C(CH₃)₃); ¹³C NMR (CDCl₃, 75 MHz) δ_{c} 188.4 (Cq), 166.4 (Cq), 159.8 (Cq), 158.2 (Cq), 156.0 (Cq), 150.0 (CH), 143.9 (Cq), 132.1 (CH), 126.3 (CH), 117.5 (Cq), 114.6 (CH), 114.2 (CH), 111.9 (Cq), 100.5 (CH), 62.1 (CH₂), 58.9 (CH₂), 56.2 (CH₃), 34.1 (Cq), 31.5 (CH₃); EI-MS m/z 447 [M]⁺; HRMS (EI) calcd for C₂₅H₂₅N₃O₅ 447.1794, found 447.1797.

X-ray crystal data. $C_{25}H_{25}N_3O_5$; M = 447.48; T = 220(2) K; triclinic; a = 5.7298(4) Å, b = 11.4420(8) Å, c = 17.7012(13) Å, $\alpha = 96.531(2)^{\circ}$, $\beta = 96.165(2)^{\circ}$, $\gamma = 93.056(2)^{\circ}$, V =1143.77(14) Å³; space group $P_{\overline{1}}$; Z = 2; $\rho_{cald} = 1.299$ mg m⁻³; crystal dimensions $0.60 \times 0.10 \times$ 0.04 mm³; l (Mo K) = 0.71073 Å; μ = 0.092 mm⁻¹; 10379 reflections collected; 4027 independent reflections [$R_{int} = 0.0393$]; 303 parameter refined on F²; $R_1 = 0.0805$, wR2[F²] = 0.1918 (all data); GOF on F² 1.106; $\Delta \rho_{max} = 0.784$ eÅ⁻³. CCDC 870924 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

Synthesis of 3-(2-(4-benzyl-1H-1,2,3-triazol-1-yl)acetyl)-7-methoxy-coumarin (L4).

The synthetic procedure was adapted from that used for L3. 3-Azidoacetyl-7-methoxycoumarin 5 (102 mg, 0.39 mmol) and prop-2-ynylbenzene (45 mg, 0.39 mmol) were used. The reaction mixture was separated by column chromatography to give 79 mg (50%) of L4 as a pale yellow solid: mp 262–264 °C (CHCl₃); R_f 0.43

 $(CH_2Cl_2/Et_2O = 5:1)$; ¹H NMR (D₆-DMSO, 300 MHz) δ_H 8.79 (s, 1H; H_e), 7.94 (d, J = 8.7 Hz, 1H; H_d), 7.77 (s, 1H; H_g), 7.31–7.21 (m, 5H; Ph-*H*), 7.15 (d, J = 2.3 Hz, 1H; H_f), 7.07 (dd, $J_1 = 8.7$ Hz, $J_2 = 2.3$ Hz, 1H; H_c), 5.91 (s, 2H; H_b), 4.04 (s, 2H; H_h), 3.92 (s, 3H; H_a); ¹³C NMR (D₆-DMSO, 75 MHz) δ_c 189.4 (Cq), 165.6 (Cq), 159.1 (Cq), 157.5 (Cq), 149.1 (CH), 145.9 (Cq), 139.7 (Cq), 132.8 (CH), 128.6 (CH), 128.5 (CH), 126.2 (CH), 124.3 (CH), 118.2 (Cq), 114.0 (CH), 111.9 (Cq), 100.5 (CH), 69.9 (CH₂), 58.2 (CH₂), 56.5 (CH₃); EI-MS m/z 375 [M]⁺; HRMS (EI) calcd for C₂₁H₁₇N₃O₄: 375.1219, found 375.1222.

General procedures for the UV-Vis and fluorescence experiments.

UV-vis spectra were recorded on a spectrophotometer with a diode array detector, and the resolution was set at 1 nm. Fluorescence spectra were recorded on a luminescence spectrophotometer. For all measurements of fluorescence spectra, excitation was at 308 nm with the excitation and emission slit width at 4.0 nm. UV-Vis and fluorescence titration experiments were performed with 20 μ M solutions of coumarins **L1–L4** and varying concentrations of metal perchlorate in MeOH-CHCl₃ (9:1, v/v). During the measurements the temperature of the quartz sample cell and chamber was kept at 25 °C.

General procedures for quantum yield measurements.

The relative fluorescence quantum yields were determined by comparison of the integrated area of the emission spectra of the samples with respect to anthracene in EtOH ($\Phi = 0.27$). For the metal-free studies, coumarin **L3** and **L4** were prepared in 20 µM in MeOH-CHCl₃ (9:1, v/v). For the metal-bound studies, 10 equiv Hg(ClO₄)₂ were added to coumarin **L3** and **L4** (20 µM) in MeOH-CHCl₃ (9:1, v/v). Emission spectra of these samples were integrated from 350 to 600 nm with excitation at 374 nm. The relative fluorescence quantum yields were calculated using the equation: $\Phi = (A_{ref}/A)*(F/F_{ref})*(n_{MeOH}^2/n_{EtOH}^2)*\Phi_{ref}$, where A is the absorbance at the excitation wavelength, F is the integrated emission area and n is the refractive index of the solvent ($n_{MeOH} = 1.3282$, $n_{EtOH} = 1.3640$ at 25 °C).

General procedures for fluorescence lifetime measurements.

The fluorescence lifetime was measured by computer controlled Time Correlated Single Photon Counting (TCSPC) spectrometer with sub-nanosecond pulse LED at 375 nm excitation wavelength. LED was driven by an oscillator module (PDL 200-B, Picoquant, Germany) at a repetition rate of 8 MHz. The fluorescence lifetime measurements were performed with 20 μ M solutions of coumarins (L3 and L4) and varying concentrations of Hg(ClO₄)₂ in MeOH-CHCl₃ (9:1, v/v) at room temperature. The sample was degassed by bubbling of N₂ (g) through the solution for 2 min. Fluorescence lifetime data were analyzed using the software provided by FluoroFit (Picoquant, Germany) which is based on re-convolution technique using iterative non-linear least-square methods.

General procedures for the ¹H-NMR titration experiments.

¹H-NMR titration spectra were recorded at 300 or 600 MHz with tetramethylsilane (TMS) in a coaxial capillary tube as an external standard. Experiments were performed with 2.5 mM solutions of **L3** and **L4** in CD₃OD–CDCl₃ (1:1, v/v) by adding various concentrations of Hg(ClO₄)₂ at 25 °C.

General procedures for the detection limit measurements.

The detection limit (C_{DL}) of Hg²⁺ by **L3** and **L4** (20 µM) in MeOH-CHCl₃ (9:1, v/v) was determined using the equation: $C_{DL} = k_D * S_b/m$, where S_b denotes the standard deviation of blank solution (without analyte), *m* is the sensitivity that agrees with the slope of the calibration curve. For k_D , a value of 3 is recommended. The S_b was obtained from the results of 20 separate measurements.

Ligand	Slope, <i>m</i>	R^2	Standard deviation, S _b	Detection limit, C _{DL}
L3	306676	0.988	0.0205	$2.00 \times 10^{-7} \text{ M}$
L4	150185	0.9896	0.0158	$3.15 \times 10^{-7} \text{ M}$

Figure Sa. Calibration curve of (a) **L3** and (b) **L4** (20 μ M) in MeOH-CHCl₃ (9:1, v/v). Excitation wavelength was 367 nm. The fluorescence intensities of **L3** and **L4** were recorded at 423 nm and 427 nm, respectively.

Figure S1. ¹H-NMR (300 MHz, CDCl₃) of spectrum 3-(4-((4-tert-butylphenoxy)-methyl)-1*H*-1,2,3-triazol-1-yl)-7-methoxycoumarin **L1**.

Figure S2. ¹³C-NMR and DEPT (300 MHz, CDCl₃) of spectra of 3-(4-((4-tert-butyl-phenoxy) -methyl)-1*H*-1,2,3-triazol-1-yl)-7-methoxycoumarin **L1**.

Figure S3. ¹H-NMR (CDCl₃, 300 MHz) spectrum of 3-azidomethyl-7-methoxycoumarin 3.

Figure S4. ¹³C-NMR and DEPT (CDCl₃, 75 MHz) spectra of 3-azidomethyl-7-methoxy-coumarin **3**.

Figure S5. ¹H-NMR (CDCl₃, 300 MHz) spectrum of 3-((4-((4-*tert*-butylphenoxy)-methyl)-1H-1,2,3-triazol-yl)methyl)-7-methoxycourmarin **L2**.

Figure S6. ¹³C-NMR and DEPT (CDCl₃, 75 MHz) spectra of 3-((4-((4-*tert*-butyl-phenoxy)methyl)-1*H*-1,2,3-triazol-1-yl)-methyl)-7-methoxycourmarin **L2**.

Figure S7. ¹H-NMR (CDCl₃, 300 MHz) spectrum of 3-azidoacetyl-7-methoxycoumarin 5.

Figure S8. ¹³C-NMR and DEPT (CDCl₃, 75 MHz) spectra of 3-azidoacetyl-7-methoxycoumarin **5**.

Figure S9. ¹H-NMR (CDCl₃, 300 MHz) spectrum of 3-(2-(4-((4-*tert*-butylphenoxy) methyl)-1*H*-1,2,3-triazol-1-yl)acetyl)-7-methoxycoumarin **L3**.

Figure S10. ¹³C-NMR and DEPT (CDCl₃, 75 MHz) spectra of 3-(2-(4-((4-*tert*-butyl-phenoxy)methyl)-1*H*-1,2,3-triazol-1-yl)acetyl)-7-methoxycoumarin **L3**.

Figure S11. ¹H-NMR (D₆-DMSO, 300 MHz) spectrum of 3-(2-(4-benzyl-1H-1,2,3-triazol-1-yl)acetyl)-7-methoxycoumarin **L4**.

1,2,3-triazol-1-yl)acetyl)-7-methoxycoumarin L4.

Figure S13. UV-Vis spectrum of (a) **L1**, (b) **L2** and (c) **L3** (20 μ M) by the addition of 10 equiv of various metal perchlorates (Li⁺, Na⁺, K⁺, Mg²⁺, Ca²⁺, Ba²⁺, Cr³⁺, Mn²⁺, Ni⁺, Cu²⁺, Zn²⁺, Hg²⁺, Ag⁺, Cd²⁺, and Pb²⁺) in MeOH-CHCl₃ (9:1, v/v).

Figure S14. UV-Vis spectrum of L3 (20 μ M) with various equiv of Hg(ClO₄)₂ in MeOH-CHCl₃ (9:1, v/v).

Figure S15. The ESI-MS spectrum of L3 by adding 1 equiv of Hg(ClO₄)₂.

Figure S16. UV-Vis spectrum of **L4** (20 μ M) by the addition of 10 equiv of various metal perchlorates (Li⁺, Na⁺, K⁺, Mg²⁺, Ca²⁺, Ba²⁺, Cr³⁺, Mn²⁺, Ni⁺, Cu²⁺, Zn²⁺, Hg²⁺, Ag⁺, Cd²⁺, and Pb²⁺) in MeOH-CHCl₃ (9:1, v/v).

Figure S17. Percentage fluorescence intensity changes of **L4** by the addition of 10 equiv of various metal perchlorates (Li⁺, Na⁺, K⁺, Mg²⁺, Ca²⁺, Ba²⁺, Cr³⁺, Mn²⁺, Ni⁺, Cu²⁺, Zn²⁺, Hg²⁺, Ag⁺, Cd²⁺, and Pb²⁺) in MeOH/CHCl₃ (9:1, v/v). Excitation wavelength was 367 nm. The fluorescence intensities of **L4** was recorded at 427 nm.

Figure S18. UV-Vis spectrum of L4 (20 μ M) with various equiv of Hg(ClO₄)₂ in MeOH-CHCl₃ (9:1, v/v).

Figure S19. Fluorescence decay profiles and the distribution of weighted residuals for the single or bi-exponential function of **L3** (20 μ M, $\lambda_{ex} = 375$ nm LED, monitored at 423 nm) with (a) 0, (b) 1, (c) 2, (d) 5, (e) 10 and (f) 20 equiv. of Hg(ClO₄)₂ in cosolvent MeOH/CHCl₃ (9:1, v/v). IRF means the instrument response function (IRF), which was obtained by the detection of Rayleigh scattered light in a scattering solution.

Figure S20. Fluorescence decay profiles and the distribution of weighted residuals for the single or bi-exponential function of **L4** (20 μ M, $\lambda_{ex} = 375$ nm LED, monitored at 427 nm) with (a) 0, (b) 1, (c) 2, (d) 5, (e) 10 and (f) 20 equiv. of Hg(ClO₄)₂ in cosolvent MeOH/CHCl₃ (9:1, v/v). IRF means the instrument response function (IRF), which was obtained by the detection of Rayleigh scattered light in a scattering solution.

Figure S21. The FT-IR spectrum of L3 (solid line) and its complex with $Hg(ClO_4)_2$ (dashed blue and solid red lines).

Figure S22. The X-ray crystal structures of L1 (110634LT_0m) and L3 (IC12713).

Identification code	110634lt_0m		
Empirical formula	C23 H23 N3 O4		
Formula weight	405.44		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P -1		
Unit cell dimensions	a = 5.933(3) Å	$= 93.50(2)^{\circ}.$	
	b = 11.085(6) Å	= 92.85(2)°.	
	c = 15.588(8) Å	= 93.01(2)°.	
Volume	1020.4(9) Å ³		
Ζ	2		
Density (calculated)	1.320 Mg/m ³		
Absorption coefficient	0.092 mm ⁻¹		
F(000)	428		
Crystal size	0.17 x 0.15 x 0.06 mm ³		
Theta range for data collection	1.31 to 26.56°.		
Index ranges	-7<=h<=6, -13<=k<=13, -19<=l<=19		
Reflections collected	13644		
Independent reflections	4137 [R(int) = 0.0764]		
Completeness to theta = 26.56°	97.0 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.9486 and 0.7632		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	4137 / 0 / 275		
Goodness-of-fit on F ²	0.973		
Final R indices [I>2sigma(I)]	R1 = 0.0763, wR2 = 0.2076		
R indices (all data)	R1 = 0.1373, $wR2 = 0.2611$		
Largest diff. peak and hole	0.373 and -0.455 e.Å ⁻³		

Table S2. Crystal data and structure refinement for 110634LT_0m.

Identification code	ic12713		
Empirical formula	C25 H25 N3 O5		
Formula weight	447.48		
Temperature	220(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 5.7298(4) Å	= 96.531(2)°.	
	b = 11.4420(8) Å	= 96.165(2)°.	
	c = 17.7012(13) Å	= 93.056(2)°.	
Volume	1143.77(14) Å ³		
Ζ	2		
Density (calculated)	1.299 Mg/m ³		
Absorption coefficient	0.092 mm ⁻¹		
F(000)	472		
Crystal size	0.60 x 0.10 x 0.04 mm ³		
Theta range for data collection	1.17 to 25.00°.		
Index ranges	-6<=h<=6, -13<=k<=13, -21<=l<=20		
Reflections collected	10379		
Independent reflections	4027 [R(int) = 0.0393]		
Completeness to theta = 25.00°	100.0 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.9963 and 0.9470		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	4027 / 0 / 303		
Goodness-of-fit on F ²	1.106		
Final R indices [I>2sigma(I)]	R1 = 0.0805, wR2 = 0.1918		
R indices (all data)	R1 = 0.1129, wR2 = 0.2179		
Extinction coefficient	0.037(5)		
Largest diff. peak and hole	0.784 and -0.377 e.Å ⁻³		

Table S3. Crystal data and structure refinement for ic12713.