Supporting Information

Positively Charged Polymer Brushes–Functionalized Filter Paper for DNA Sequence Determination Following Dot Blot Hybridization Employing Pyrrolidinyl Peptide Nucleic Acid Probe

Praethong S. Laopa, Tirayut Vilaivan and Voravee P. Hoven

Page

- **Fig. S1** Images of water droplet during water contact angle measurement on surface-modified filter paper: (a) immobilized with initiator, (b) grafted with PDMAEMA, and (c) grafted with QPDMAEMA.
- 4 **Table S1** PNA and DNA sequences used in this study.
- 5 **Table S2** Description of DNA and PNA sequences used for each spot of the test results shown in Figs. 3, 5-6.
- 6 **Table S3** Characteristic of PDMAEMA synthesized by ARGET ATRP.
- **Fig. S2** GPC traces of PDMAEMA synthesized by ARGET ATRP having target DP of 100, 200, and 400 obtained using a Waters E600 column, THF as a mobile phase with a flow rate of 1.0 mL.min⁻¹ at 35 °C and narrow polystyrene standards.
- 8 **Fig. S3** SEM images of surface-modified filter paper: (a) unmodified, (b) immobilized with initiator, (c) grafted with PDMAEMA (target DP =200), and (d) grafted with QPDMAEMA (target DP =200).
- 9 **Fig. S4** FT-IR spectra of material scraped from the surface-modified filter paper: (a) unmodified, (b) immobilized with initiator, (c) grafted with PDMAEMA, and (d) grafted with QPDMAEMA.
- 10 Fig. S5 XPS spectra of O1s and C1s regions of unmodified filter paper.

- 11 **Fig. S6** XPS spectra of O1s, C1s, and Br3d regions of filter paper immobilized with initiator.
- 12 **Fig. S7** XPS spectra of O1s, N1s, C1s, and Br3d regions of PDMAEMAgrafted filter paper.
- 13 **Fig. S8** XPS spectra of O1s, C1s, N1s, Cl2p, and Br3d regions of QPDMAEMA-grafted filter paper.
- 14 **Fig. S9** XPS spectra of O1s, C1s, N1s, Cl2p, P2p, and Br3d regions of QPDMAEMA-grafted filter paper after DNA adsorption.
- 15 **Table S4** Atomic composition of surface-modified filter paper determined by XPS analysis.
- 16 **Fig. S10** Representative images (column A: scanned image and column B: profile image) of the test results demonstrating the effect of amount and type of HRP enzyme ((+)1= w/ b-DNA SLE2 and (-)2 = w/o b-DNA SLE2): a) 20 ng avidin-HRP (2 μ L of 10 μ g/mL), b) 50 ng avidin-HRP (2 μ L of 25 μ g/mL), c) 30 ng SA-HRP (3 μ L of 10 μ g/mL), d) 20 ng SA-HRP (2 μ L of 10 μ g/mL), and e) 10 ng SA-HRP (1 μ L of 10 μ g/mL).
- 17 **Fig. S11** Representative images (column A: scanned image and column B: profile image) of the test results demonstrating the effect of type and concentration of substrate and reaction time used in the step of enzymatic signal amplification ((+)1= w/ b-DNA and (-)2 = w/o b-DNA) using 20 ng SA-HRP (2 μ L of 10 μ g/mL): a) 250 μ L of 1.6 mg/mL of TMB in DMF/ H₂O (1/9) and 250 μ L of 1.6 mg/mL of urea-H₂O₂ for 1 min, b) 250 μ L of 0.8 mg/mL OPD and 250 μ L of 0.8 mg/mL urea-H₂O₂ for 1 min, and c-e) 250 μ L of 1.6 mg/mL OPD and 250 μ L of 1.6 mg/mL urea-H₂O₂ for 1 Herein H₂O₂ for 1, 2 and 5 min, respectively.
- **Fig. S12** Representative images (column A: scanned image and column B: profile image) of the test results demonstrating the effect of blocking solution before SA-HRP addition ((+)1 = w/ b-DNA and (-)2 = w/o b-DNA): a) 1% BSA in 0.1 M PBS pH 7.4 containing 0.1 M NaCl, b) 1% skim milk in 0.1 M PBS pH 7.4 containing 0.1 M NaCl, and c) w/o blocking. The tests were performed using the mixture of 250 μ L of 1.6 mg/ mg/mL OPD and 250 μ L of 1.6 mg/mL urea-H₂O₂ as substrate mixture to activate color for 1 min.
- 19 **Table S5** Description of DNA and PNA sequences used for each spot of the test result shown in Fig. 4.

Fig. S1 Images of water droplet during water contact angle measurement on surface-modified filter paper: (a) immobilized with initiator, (b) grafted with PDMAEMA, and (c) grafted with QPDMAEMA.

Table S1 PNA and DNA sequences used in this study

DNA targets

Code	Sequence	Description
b-DNA SLE2	d(5'-b-TTGGGAAGGGGAA-3')	Positive control
DNA SLE1	d(5'-TTGGGA <u>G</u> GGGGAA-3')	Complementary to b-PNA SLE1
		Single mismatch to b-PNA SLE2
DNA SLE2	d(5'-TTGGGA <u>A</u> GGGGAA-3')	Complementary to b-PNA SLE2
		Single mismatch to b-PNA SLE1
DNA (AG)	d(5'-TGTGGATAGTGA-3')	Non-complementary to b-PNA (TG)
DNA (AC)	d(5'-GTCATAGCATCA-3')	Complementary to b-PNA (TG)

PNA probes

Code	Sequence	Description
b-PNA SLE1	b-(egl) ₂ -TTCCCC <u>C</u> TCCCAA-LysNH ₂	Complementary to DNA SLE1
		Single mismatch to DNA SLE2
b-PNA SLE2	$b\text{-}(egl)_2\text{-}TTCCCC\underline{T}TCCCAA\text{-}LysNH_2$	Complementary to DNA SLE2
		Single mismatch to DNA SLE1
b-PNA (TG)	b-(egl) ₂ -TGATGCTATGAC-LysNH ₂	Complementary to DNA (AC)
		Non-complementary to DNA (AG)

Spot position	DNA	PNA	Remark
1	b-DNA SLE2	-	positive (+)
2	DNA SLE1	b-PNA SLE2	negative (-)
3	DNA SLE2	-	negative (-)
4	DNA SLE2	b-PNA SLE2	positive (+)
5	-	b-PNA SLE2	negative (-)
6	-	-	negative (-)

Table S2 Description of DNA and PNA sequences used for each spot of the test results shown in Figs. 3, 5-6.

Entry	$[Sn(EH)_2]_0/[CuBr_2]_0^a$	solvent	time	%	$M (4h_{ab})^{c}$	M (and)d	PDI ^d
			(h)	conv. ^b	$M_n(\text{theo})$	$M_n(\exp)$	
1	250	anisole	19	99	31,086	53,488	1.30
2	250	acetone	24	72	22,608	21,670	1.38
3	400	acetone	24	90	28,260	28,495	1.28
4	667	acetone	24	90	28,260	23,983	1.35

Table S3 Characteristic of PDMAEMA synthesized by ARGET ATRP.

^aDMAEMA/EBiB/CuBr₂/Me₆TREN = 200:1:0.006:0.25. [DMAEMA]₀ = 4.12 M, The polymerization was conducted in a scintillation vial with volume of free space = 7.7 mL. ^bDetermined by ¹H NMR in CDCl₃. ^c M_n (theo) = ([DMAEMA]₀/[EBiB]₀) × conversion. ^dDetermined by GPC in THF based on polystyrene standards.

Fig. S2 GPC traces of PDMAEMA synthesized by ARGET ATRP having target DP of 100, 200, and 400 obtained using a Waters E600 column, THF as a mobile phase with a flow rate of 1.0 mL.min⁻¹ at 35 °C and narrow polystyrene standards.

Fig. S3 SEM images of filter paper: (a) unmodified, (b) immobilized with initiator, (c) grafted with PDMAEMA (target DP =200), and (d) grafted with QPDMAEMA (target DP =200).

Fig. S4 FT-IR spectra of material scraped from the surface-modified filter paper: (a) unmodified, (b) immobilized with initiator, (c) grafted with PDMAEMA, and (d) grafted with QPDMAEMA.

Fig. S5 XPS spectra of O1s and C1s regions of unmodified filter paper.

Fig. S6 XPS spectra of O1s, C1s, and Br3d regions of filter paper immobilized with initiator.

Fig. S7 XPS spectra of O1s, N1s, C1s, and Br3d regions of PDMAEMA-grafted filter paper.

Fig. S8 XPS spectra of O1s, C1s, N1s, Cl2p, and Br3d regions of QPDMAEMA-grafted filter paper.

Fig. S9 XPS spectra of O1s, C1s, N1s, Cl2p, P2p, and Br3d regions of QPDMAEMA-grafted filter paper after DNA adsorption.

Samula	Atomic composition (%)						C/N
Sample	С	0	Br	Ν	Cl	Р	- C/IN
							-
Unmodified	58.2	41.7	N/D	N/D	N/D	N/D	
Immobilized with initiator	57.7	41.5	0.8	N/D	N/D	N/D	-
Grafted with PDMAEMA	65.0	26.8	0.2	8.0	N/D	N/D	8.1
Grafted with QPDMAEMA ^a	69.2	24.9	0.2	5.8	< 0.1	N/D	11.9
Grafted with QPDMAEMA after	60.4	33.6	0.1	4.6	0.15	1.2	13.1
DNA adsorption							

Table S4 Atomic composition of surface-modified filter paper as determined by XPS analysis.

N/D = Not detected, ^a the analysis was done after chlorine exchange

Fig. S10 Representative images (column A: scanned image and column B: profile image) of the test results demonstrating the effect of amount and type of HRP enzyme ((+)1= w/ b-DNA SLE2 and (-)2 = w/o b-DNA SLE2): a) 20 ng avidin-HRP (2 μ L of 10 μ g/mL), b) 50 ng avidin-HRP (2 μ L of 25 μ g/mL), c) 30 ng SA-HRP (3 μ L of 10 μ g/mL), d) 20 ng SA-HRP (2 μ L of 10 μ g/mL), and e) 10 ng SA-HRP (1 μ L of 10 μ g/mL).

Fig. S11 Representative images (column A: scanned image and column B: profile image) of the test results demonstrating the effect of type and concentration of substrate and reaction time used in the step of enzymatic signal amplification ((+)1= w/ b-DNA and (-)2 = w/o b-DNA) using 20 ng SA-HRP (2 μ L of 10 μ g/mL): a) 250 μ L of 1.6 mg/mL of TMB in DMF/ H₂O (1/9) and 250 μ L of 1.6 mg/mL of urea-H₂O₂ for 1 min, b) 250 μ L of 0.8 mg/mL OPD and 250 μ L of 0.8 mg/mL urea-H₂O₂ for 1 min, and c-e) 250 μ L of 1.6 mg/mL OPD and 250 μ L of 1.6 mg/mL urea-H₂O₂ for 1 min, respectively.

Fig. S12 Representative images (column A: scanned image and column B: profile image) of the test results demonstrating the effect of blocking solution before SA-HRP addition ((+)1 = w/ b-DNA and (-)2 = w/o b-DNA): a) 1% BSA in 0.1 M PBS pH 7.4 containing 0.1 M NaCl, b) 1% skim milk in 0.1 M PBS pH 7.4 containing 0.1 M NaCl, and c) w/o blocking. The tests were performed using the mixture of 250 μ L of 1.6 mg/ mg/mL OPD and 250 μ L of 1.6 mg/mL urea-H₂O₂ as substrate mixture to activate color for 1 min.

Fntry	Sequence	Sequence Spot position						
Entry	Sequence	1	2	3	4	5	6	
a	DNA	b-DNA SLE2	DNA SLE1	DNA SLE2	DNA SLE2	-	-	
	PNA	-	b-PNA SLE2	-	b-PNA SLE2	b-PNA SLE2	-	
	Remark	positive (+)	negative (-)	negative (-)	positive (+)	negative (-)	negative (-)	
b	DNA	b-DNA SLE2	DNA SLE1	DNA SLE2	DNA SLE2	-	-	
	PNA	-	b-PNA SLE1	-	b-PNA SLE1	b-PNA SLE1	-	
	Remark	positive (+)	positive (+)	negative (-)	negative (-)	negative (-)	negative (-)	
с	DNA	b-DNA SLE2	DNA (AG)	DNA (AC)	DNA (AC)	-	-	
	PNA		b-PNA (TG)	-	b-PNA (TG)	-	-	
	Remark	positive (+)	negative (-)	negative (-)	positive (+)	negative (-)	negative (-)	

Table S5 Description of DNA and PNA sequences used for each spot of the test results shown in**Fig. 4**.