Supporting Information

Electrochemical Detection of 9-Hydroxyfluorene Based on the Direct

Interaction with Hairpin DNA

Gang Liang, Xiaohong Li^{*}, Xinhui Liu

State Key Laboratory of Water Environment Simulation, School of Environment and Department of Chemistry, Beijing Normal University, Beijing, 100875, China

Fig. S1. Bode plots $(\lg |Z| (\bullet) vs. \lg \omega$ and $\Phi(\nabla) vs. \lg \omega$) for films of hairpin DNA (1) before (A) after (B) incubated with 550 nM 9-OHFLU for 30min. Measured data were shown as symbols with calculated fit to the equivalent circuit as solid lines.

Fig. S2. Representative Nyquist plots ($-Z_{im} vs. Z_{re}$) for films of hairpin DNA (1) (\circ) hybridization with DNA (2) to formed matched ds-DNA(1+2) before (\bullet) and after (\blacksquare) incubated with 550 nM 9-OHFLU for 30 min. Measured data were shown as symbols with calculated fit to the equivalent circuit (shown inset of Figure 1) as solid lines.

Table S1. Equivalent Circuit Element Values for Films of Hairpin DNA (1), ds-DN	A
(1+2) before and after Incubating with 550 nM 9-OHFLU ^b	

			C	ircuit eleme	ents		
	R _s	C_{film}	R _{CT}	$R_{\rm x}$	CPE	n	$\Delta R_{\rm CT}$
	$(\Omega \cdot cm^2)$	$(\mu F \cdot cm^{-2})$	$(\Omega \cdot cm^2)$	$(\Omega \cdot cm^2)$	$(\mu F \cdot cm^{-2})$		$(\Omega \cdot cm^2)$
Hairpin DNA (1)	7.5(0.2)	7.4(0.4)	7897(11)	5.2(0.4)	22.4(0.5)	0.90(0.01)	
ds-DNA(1+2)	6.7(0.1)	10.2(0.3)	14248(20)	10.1(0.7)	27.3(1.4)	0.91(0.03)	
ds-DNA(1+2)	6.7(0.1)	10.2(0.4)	14460(17)	10.2(0.8)	27.2(1.7)	0.01(0.02)	212 (26)
+ 9-OHFLU	0.7(0.1)	10.3(0.4)	14400(17)	10.5(0.8)	27.3(1.7)	0.91(0.03)	212 (30)
^b The values in parentl	heses represe	ent the standard	d deviations from	m at least five	electrode meas	surements.	

Fig. S3. Representative Nyquist plots ($-Z_{im} vs. Z_{re}$) for films of ss-DNA (3) before (\circ) and after incubated with 550 nM 9-OHFLU for 30min (\bullet). Measured data were shown as symbols with calculated fit to the equivalent circuit (shown inset of Fig. 1) as solid lines.

Table S2. Equivalent Circuit Element Values for Films of ss-DNA (3) before andafter incubated with 550 nM 9-OHFLU c									
			C	ircuit eleme	ents				
	R _s	C_{film}	R _{CT}	R _x	CPE	n	$\Delta R_{\rm CT}$		
	$(\Omega \cdot cm^2)$	$(\mu F \cdot cm^{-2})$	$(\Omega \cdot cm^2)$	$(\Omega \cdot cm^2)$	$(\mu F \cdot cm^{-2})$		$(\Omega \cdot cm^2)$		
ss-DNA(3)	6.8(0.2)	7.4(0.4)	7669(50)	9.9(2.4)	26.6(3.0)	0.89(0.01)			
ss-DNA(3) +9-OHFLU	6.9(0.0)	7.5(1.5)	9695(83)	10.7(0.1)	26.3(4.9)	0.89(0.00)	2026(52)		
^c The values in p	^c The values in parentheses represent the standard deviations from at least five electrode measurements.								

Table S3. Chemical Shifts of -OH in 9-OHFLU before and after Interacting								
with Nucleobases in D ₂ O								
Chemical shifts (ppm)								
	9-OHFLU	9-OHFLU+ A	9-OHFLU + T	9-OHFLU +C				
δ(OH)	5.749	5.586	5.692	5.689				
$\Delta\delta(OH)$		0.163	0.057	0.060				

Table S4. Che	Table S4. Chemical Shifts of -NH group of A, T, G, C before and after Interacting with 9-OHFLU in <i>d</i> ₆ -DMSO							
		Chem	ical shifts (ppn	1)				
	Α	Т	(, ,	С			
	N^{6}	N^3	\mathbf{N}^{1}	N^2	N^4			
δ(NH)	7.078	10.986	10.454	6.254	7.029			
δ (NH)+9-OHFLU	7.115	10.998	10.473	6.271	7.052			
$\Delta\delta(NH)$	0.037	0.012	0.019	0.017	0.023			

Fig. S4. ¹H NMR spectra of thymine, adenine and mixture with each equal molar in the d_6 -DMSO. Chemical shifts were reported in parts per million (ppm) relative to tetramethylsilane as the internal standard (0.00 ppm).

Table S5.	R _{CT} an	d $\Delta R_{\rm CT}$ f	or Hair	pin DNA	A (1) Fil	ms befor	e and af	ter inter	acting w	ith 9-OH	FLU ^d
Circuit	9-OHFLU										
elements	0 nM	0.55nM	1nM	2nM	5.5 nM	27.5nM	55 nM	110 nM	275 nM	550 nM	1.1 µM
$R_{\rm CT} \left(\Omega \cdot {\rm cm}^2 \right)$	7897	7944	7955	7974	7991	8133	8337	8784	9334	10480	10519
	(11)	(7)	(13)	(28)	(6)	(44)	(11)	(78)	(6)	(39)	(6)
$\Delta R_{\rm CT}(\Omega \cdot {\rm cm}^2$	0	47(7)	58(12)	77(12)	94(6)	236(45)	440(10)	887(77)	1837(5)	2583(39)	2622(6)
)											

^dThe values in parentheses represent the standard deviations from at least five electrode measurements.

Fig. S5. Relationship between ΔR_{CT} and the concentrations of 9-OHFLU (**■**) ranged from 0.5 nM to 2 nM in Tris-buffer solution. The line (•) as the blank control group represented the values of ΔR_{CT} after and before incubating hairpin DNA (1) films in the solutions without 9-OHFLU. Error bars are derived from a minimum of five electrodes.

Fable S6. Comparison of reported methods and the proposed method for9-OHFLU determination						
Methods	Detection limit (nM)		Reference			
	0.33		1			
	0.13/0.74	70-74	2			
GC-MS	1.2	85.2	3			
	1.1	70-130	4			
	11	98-121	5			
GC-GC-FID	0.2	69	6			
	38.5	87±6.9	7			
LC-MS	55		8			
LC-DAD	2.2	103-110	9			
	1		this report			
This method	4 ^e	96-102 ^e	this report			

^e Detection limit and recovery in real water samples.

References

1 G. Gmeiner, P. Gärtner, C. Krassnig and H. Tausch, J. Chromatogr. B 2002, 766, 209-218.

2 T. Luan, S. Fang, Y. Zhong, L. Lin, S. Chan, C. Lan and N. F. Y. Tam, J. Chromatogr. A 2007, 1173, 37-43.

3 L. Campo, F. Rossella and S. Fustinoni, J. Chromatogr. B 2008, 875, 531-540.

4 L. Campo, F. Rossella, S. Pavanello, D. Mielzynska, E. Siwinska, L. Kapka, P. A. Bertazzi and S. Fustinoni, *Toxicol. Lett.* 2010, **192**, 72-78.

5 M. Mattarozzi, M. Musci, M. Careri, A. Mangia, S. Fustinoni, L. Campo and F. Bianchi, J. Chromatogr. A 2009, **1216**, 5634-5639.

6 L. Amorim, J. Dimandja and Z. Cardeal, J. Chromatogr. A 2009, 1216, 2900-2904.

7 T. R. Van de Wiele, K. M. Peru, W. Verstraete, S. D. Siciliano and J. V. Headley, *J. Chromatogr. B* 2004, **806**, 245-253.

8 M. T. Galceran and E. Moyano, J. Chromatogr. A 1996, 731, 75-84.

9 M. Mundt and J. Hollender, J. Chromatogr. A 2005, 1065, 211-218.