Supporting information

A highly selective and sensitive fluorescence assay for determination of copper (II) and cobalt (II) ions in environmental water and toner samples

Chia-Yi Tsai and Yang-Wei Lin*

Department of Chemistry, National Changhua University of Education, Changhua, Taiwan

E-mail: linyejerry@cc.ncue.edu.tw (Y.W.L.)

Figure S1. Fluorescence intensity of AUR oxidation product in the Tris-acetate buffer at (A) different pH values, (B) buffer systems, and (C) different concentrations of Tris-acetate buffer in the presence of (\Box) Cu²⁺ and ($\overset{\text{m}}{=}$) Co²⁺ ions (10 μ M) (n = 3).

Figure S2. Hydrodynamic diameter distributions of the (A) AUR–hydrogen peroxide– Cu(II) and (B) AUR–hydrogen peroxide–Co(II) systems in different buffer systems: (a) Tris-acetate, (b) glycine–NaOH, (c) Na₃PO₄–Na₂HPO₄, and (d) without buffer. Conditions: AUR concentration: 25 μ M, hydrogen peroxide concentration: 400 μ M, Cu(II) concentration: 10 μ M, Co(II) concentration: 10 μ M.

Figure S3. Effects of concentrations of (A) H_2O_2 and (B) AUR on fluorescence intensity of AUR oxidation product in the presence of (\Box) $Cu^{2+}(10 \ \mu M)$ and (\blacksquare) Co^{2+} ions (1.0 μM) (n = 3).

Figure S4. Linear responses of the fluorescence intensity plotted with respect to the concentration of Cu^{2+} and Co^{2+} ions spiked in the (A) lake and (B) pond water samples (n = 3).