Effect of pH on the photophysical properties of two new

carboxylic-substituted iridium (III) complexes

Jiena Weng, ^a Qunbo Mei, *^a Weiwei Jiang, ^a Quli Fan, ^a Bihai Tong, ^b Qidan Ling, ^a and Wei Huang *^a

^a Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210046, P. R. China.

^b Institute of Molecular Engineering and Applied Chemistry, College of Metallurgy and Resources, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China.

Fax: +86 25 8586 6999; Tel: +86 25 8586 6008;

E-mail: <u>iamqbmei@njupt.edu.cn</u> (Q. Mei), <u>iamwhuang@njupt.edu.cn</u>, <u>iamdirector@fudan.edu.cn</u> (W.Huang)

Contents:

1. Supplementary spectra and ¹H NMRdata (S1-S16)

2. Characterization of the ligand and Ir(III) complexes: ¹H-NMR, ¹³C-NMR , MADIL-TOF-MS and IR spectra (S17-S26)

Figure S1. UV-vis absorption (normalized) and emission (excited at 400nm) spectra of: (a, \blacksquare), DMSO solution of (**TPAQCE**)₂**Irpic**; (b, \bullet), solution (a) in presence of 10 equiv of aqueous NaOH; (c, \bigtriangledown), DMSO solution of (**TPAQCOH**)₂**Irpic**.

Figure S2. UV-vis absorption (normalized) and emission spectra of: (a, \blacksquare), ethanol solution of (**TPAQCE**)₂**Irpic**; (b, \bullet), solution (a) in presence aqueous NaOH, (c, \blacktriangle), solution (b) in presence of HCl; (d, \bigtriangledown), ethanol solution of (**TPAQCOOH**)₂**Irpic**; (e, \diamondsuit), solution (d) in presence of HCl. Exicited at 400nm.

Figure S3. Aromatic part of the ¹H NMR in DMSO- d_6 (from top to bottom): (**TPAQCE**)₂**Irpic**; (**TPAQCE**)₂**Irpic** containing 10 equiv of NaOH; and (**TPAQCOOH**)₂**Irpic**.

Figure S4. Aromatic part of the ¹H NMR in DMSO-*d*₆: (**TPAQCE**)₂**Irpic** containing 10 equiv of NaOH.

Figure S5. Aromatic part of the ¹H NMR in DMSO- d_6 : (**TPAQCE**)₂**Irpic** (1) and gradual addition of HCl (ca. 2%-3% in methanol / DMSO- d_6) (2-6); The six new peaks are marked with *.

Figure S6. Aromatic part of the ¹H NMR in DMSO- d_6 : (**TPAQCE**)₂**Irpic** (1); addition of ca. 20-30 equiv of HCl (ca. 2-3% in methanol / DMSO- d_6) to the (**TPAQCE**)₂**Irpic** solution for 2h (2); addition of ca. 20-30 equiv of HCl (ca. 2-3% in methanol / DMSO- d_6) to the (**TPAQCE**)₂**Irpic** solution for 48h (3). The six new peaks appeared by addition HCl to the solution of (**TPAQCE**)₂**Irpic** are marked with *.

Figure S7. Aromatic part of the ¹H NMR in DMSO- d_6 : (**TPAQCOOH**)₂**Irpic** (1); addition of ca. 20-30 equiv of HCl (ca. 2-3% in methanol / DMSO- d_6) to the (**TPAQCOOH**)₂**Irpic** solution for 2h (2); addition of ca. 20-30 equiv of HCl (ca. 2-3% in methanol / DMSO- d_6) to the (**TPAQCOOH**)₂**Irpic** solution for 48h (3).

Figure S8. Aromatic part of the ¹H NMR in DMSO- d_6 : (**TPAQCE**)₂**Irpic** (1); (**TPAQCE**)₂**Irpic** containing 10 equiv of NaOH (2); gradual addition of HCl to the solution of (**TPAQCE**)₂**Irpic** containing 10 equiv of NaOH (3-7).

Figure S9. Aromatic part of the ¹H NMR in DMSO- d_6 : (**TPAQCE**)₂**Irpic** (1); (**TPAQCE**)₂**Irpic** containing aqueous NaOH (10 equive, in D₂O) (2); addition of HCl (ca. 2-3% in methanol / DMSO- d_6) to the (**TPAQCE**)₂**Irpic** solution containing NaOH (3); (**TPAQCOOH**)₂**Irpic** containing HCl (20-30% in methanol) (4); (**TPAQCOOH**)₂**Irpic** (5). The five new peaks appeared by addition HCl to the solution of (**TPAQCOOH**)₂**Irpic** are marked with *.

Figure S10. Change in absorption spectra of (**TPAQCOOH**)₂**Irpic** ($c = 1.34 \times 10^{-4}$ M) in DMSO upon the repeated addition of HCl (0.2 M) and aqueous NaOH (0.2M). (a) = (**TPAQCOOH**)₂**Irpic** before the addition of HCl; (b): (a) + HCl; (c): (b) + NaOH; (d): (c) + HCl; (e): (d) + NaOH; (f): (e) + HCl; (g): (f) + NaOH. Inset: Change in absorbance at 546nm of (**TPAQCOOH**)₂**Irpic** caused by the repeated addition of HCl (5 μ L) and NaOH (5 μ L).

Figure S11. Change in emission spectra of (**TPAQCOOH**)₂**Irpic** ($c = 1.34 \times 10^{-4}$ M) in DMSO (excited at 400nm) upon the repeated addition of HCl (0.2 M) and aqueous NaOH (0.2 M). (a) = (**TPAQCOOH**)₂**Irpic** before the addition of HCl; (b): (a) + HCl; (c): (b) + NaOH; (d): (c) + HCl; (e): (d) + NaOH; (f): (e) + HCl; (g): (f) + NaOH. Inset: Change in emission intensity at 598nm of (**TPAQCOOH**)₂**Irpic** caused by the repeated addition of HCl (5 μ L) and NaOH (5 μ L).

Figure S13. A plot of emission intensity of $(\mathbf{TPAQCOOH})_2\mathbf{Irpic}$ at I_{625nm} vs pH (6.50 – 8.00) in aqueous buffer solutions. The red solid curve is fitting line of experimental data with relative coefficient R = 0.985.

Figure S14. pH-Dependent changes in molar absorption coefficients (424 nm) and emission intensity (625 nm) of the probe (**TPAQCOOH**)₂**Irpic** in aqueous PBS buffers and the corresponding error bars were provided.

Figure 15. pH-Dependence of the absorption spectra of $(TPAQCOOH)_2$ Irpic in ethanol:H₂O = 3:7 (containing 0.1 M NaCl) at concentration of 5.0×10^{-5} M.

Figure 16. pH-Dependence of the emission spectra of $(TPAQCOOH)_2$ Irpic in ethanol:H₂O = 3:7 (containing 0.1 M NaCl) at concentration of 5.0×10^{-5} M.

Figure S19. MADIL-TOF MS of TPAQCE

Figure S22. MADIL-TOF MS of (TPAQCE)₂Irpic

Figure S23. IR spectrum of (TPAQCE)₂Irpic

Bruker Daltonics flexAnalysis

printed: 7/27/2012 10:56:19 PM

Figure S25. MADIL-TOF MS of (TPAQCOOH)₂Irpic

Figure S26. IR spectrum of (TPAQCOOH)₂Irpic