Supplemental Data and Information for:

Mass Spectrometry Sequencing of Transfer Ribonucleic Acids by the Comparative Analysis of RNA Digests (CARD) Approach

Siwei Li and Patrick A. Limbach*

Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, PO Box 210172, University of Cincinnati, Cincinnati, OH 45221-0172

*To whom correspondence should be addressed.

Phone (513) 556-1871 Fax (513) 556-9239 email <u>Pat.Limbach@uc.edu</u>

Supplemental Table S1. Basic Local Alignment Search Tool (BLAST) results for searching 14 randomly chosen *E. coli* tRNA genes against the *C. koseri* genome. The value reported is the %sequence homology between the *E. coli* gene and that found in *C. koseri*.

<i>E. coli</i> query sequence:	tRNA ID	E. coli	C. koseri
tRNA: Alanine 1 (Ala1) [A]	DA1660	100%	100%
tRNA: Cysteine (Cys) [C]	DC1660	100%	98%
tRNA: Glutamic Acid 1 (Glu1) [E]	DE1660	100%	100%
tRNA: Phenylalanine (Phe) [F]	DF1660	100%	100%
tRNA: Glycine 1 (Gly1) [G]	DG1660	100%	100%
tRNA: Histidine (His) [H]	DH1660	100%	100%
tRNA: Isoleucine 1 (Ile1) [I]	DI1660	100%	100%
tRNA: Leucine 1 (Leu1) [L]	DL1660	100%	100%
tRNA: Methionine (Met) [M]	DM1660	100%	100%
tRNA: Glutamine 1 (Gln1) [Q]	DQ1660	100%	100%
tRNA: Arginine 1 (Arg1) [R]	DR1660	100%	98%
tRNA: Serine 1 (Ser1) [S]	DS1664	100%	100%
tRNA: Threonine 1 (Thr1) [T]	DT1660	100%	97%
tRNA: Valine 1 (Val1) [V]	DV1662	100%	100%

Supplemental Table S2. Excel file containing tRNA sequences for *E. coli* obtained from the tRNAdb 2009 database (http://trnadb.bioinf.uni-leipzig.de/)¹ aligned with the appropriate *C. koseri* tRNA genes obtained from the Genomic tRNA Database (http://gtrnadb.ucsc.edu/)² or from BLAST searches against the *C. koseri* genome (NC_009792.1).³ Aligned sequences are then compared as described in the text to yield anticipated singlets and doublets during comparative sequencing.

Supplemental Table S3. Excel file containing tRNA sequences for *E. coli* obtained from the tRNAdb 2009 database (http://trnadb.bioinf.uni-leipzig.de/)¹ aligned with the appropriate *S. enterica* tRNA genes obtained from the Genomic tRNA Database (http://gtrnadb.ucsc.edu/).² Aligned sequences are then compared as described in the text to yield anticipated singlets and doublets during comparative sequencing.

Supplemental Figure S1. Extracted ion chromatograms corresponding to the anticipated doubly- and triply-charged ions of $AC[s^2C]U[mnm^5U]CU[t^6A]AGp$, a singlet from tRNA-Arg(UCU), at 5 µg and 20 µg of *E. coli* total tRNA after RNase T1 digestion loaded on column. The XIC response at 31.5 min corresponds to a doubly-charged ion consistent with a base composition of $C_2U_2A_2Gp$ + methyl, which is not the anticipated singlet.

Supplemental Figure S2. Mass spectrum corresponding to the anticipated singlet [DUGp] from *C. koseri* tRNA-Asp(GUC). A number of interfering ions, likely originating from the ubiquitous digestion products CCGp (m/z 972.1), (CU)Gp (m/z 973.1), and UUGp (m/z 974.1), are present and can interfere with detection of the DUGp singlet.

Supplemental Figure S3. Mass spectra corresponding to the anticipated singlet CAAAGp (m/χ 827.5, 2- charge) when (a) *C. koseri* is labeled with ¹⁸O and (b) *E. coli* is labeled with ¹⁸O. Although the isotopic envelope shifts by -1 m/χ unit when *C. koseri* is labeled with ¹⁶O, interfering RNase T1 digestion products hinder unequivocal assignment of this singlet.

Supplemental Figure S4. (a) Collision-induced dissociation mass spectrum of the singlet $U[s^4U]AACAAAGp$ from *E. coli* total tRNAs. (b) Collision-induced dissociation mass spectrum of the doublet $[m^7G]UCCCCAGp$ from tRNA-Thr(GGU).

Supplemental Figure S5. Calculated codon usage frequencies for *E. coli, C. koseri* and *T. thermophilus.* Comparative sequencing is more effective when the codon usage frequencies of the reference and candidate organisms are similar.

References

- 1. F. Juhling, M. Morl, R. K. Hartmann, M. Sprinzl, P. F. Stadler and J. Putz, *Nucleic Acids Res*, 2009, **37**, D159-162.
- 2. P. P. Chan and T. M. Lowe, *Nucleic Acids Res*, 2009, **37**, D93-97.
- 3. S. F. Altschul, W. Gish, W. Miller, E. W. Myers and D. J. Lipman, *J Mol Biol*, 1990, **215**, 403-410.

Supplemental Figure S1. Extracted ion chromatograms corresponding to the anticipated doubly- and triply-charged ions of AC[s²C]U[mnm⁵U]CU[t⁶A]AGp, a singlet from tRNA-Arg(UCU), at 5 μ g and 20 μ g of *E. coli* total tRNA after RNase T1 digestion loaded on column. The XIC response at 31.5 min corresponds to a doubly-charged ion consistent with a base composition of C₂U₂A₂Gp + methyl, which is not the anticipated singlet.

Supplemental Figure S2. Mass spectrum corresponding to the anticipated singlet [DUGp] from *C. koseri* tRNA-Asp(GUC). A number of interfering ions, likely originating from the ubiquitous digestion products CCGp (m/z 972.1), (CU)Gp (m/z 973.1), and UUGp (m/z 974.1), are present and can interfere with detection of the DUGp singlet.

Supplemental Figure S3. Mass spectra corresponding to the anticipated singlet CAAAGp (*m*/*z* 827.5, 2- charge) when (a) *C. koseri* is labeled with ¹⁸O and (b) *E. coli* is labeled with ¹⁸O. Although the isotopic envelope shifts by -1 *m*/*z* unit when *C. koseri* is labeled with ¹⁶O, interfering RNase T1 digestion products hinder unequivocal assignment of this singlet.

Supplemental Figure S4. (a) Collision-induced dissociation mass spectrum of the singlet $U[s^4U]AACAAAGp$ from *E. coli* total tRNAs. **(b)** Collision-induced dissociation mass spectrum of the doublet [m⁷G]UCCCCAGp.

Supplemental Figure S5. Calculated codon usage frequencies for *E. coli, C. koseri* and *T. thermophilus*. Comparative sequencing is more effective when the codon usage frequencies of the reference and candidate organisms are similar.