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This document includes additional figures that support the discussion in the primary manuscript.
Fig. S1 is an instrument scheme providing technical details.

Fig. S2 is a collection of SID/CID spectra at a variety of collision energies for CRP.

Fig. S3 is a collection of SID/CID spectra at a variety of collision energies for ConA.

Fig. S4 is a CCS plot for CRP pentamer, ConA tetramer and dimer at different charge states.

Fig. S5 is a summary of CCS profiles of remaining undissociated precursors for CRP and ConA,
including supercharged precursors.



Electronic Supplementary Material (ESI) for Analyst
This journal is © The Royal Society of Chemistry 2013

a) SID mode Trap He
@) Ouad I TWIG cel IMcell
uadrupole SID
e— Transfer
Source. e JIIINNN7 ne=N AANOANARAIONY 1"%%&
——— (JJ0U0U0 et U DUUUUUCUUCUL Angiyzer
0T
£E T SID Acosleraiion Volage
£ VI ey
b) CID mode Tr‘ap He
® TWIG ol Mecell
Quadrupole SID Transfer

Source

Relative
Potential

Fig. S1. lon path and potential diagram of the instrument for (a) SID and (b) CID experiments.
Red beam lines indicate precursors, while blue beam lines represent products after CID/SID. The
injection voltage for ions entering the pressurized helium cell is 45 V. CID acceleration voltage
is defined by the potential difference from the quadrupole to the trap TWIG, while SID
acceleration voltage is defined by the potential difference from the trap TWIG to the surface. The
potential of the surface is kept 45 V higher than the helium cell in SID experiments, so that the
injection voltages for the product ions are the same for CID and SID. The injection voltage from
the helium cell into the IM cell is 25 V. A 900 s delay of the traveling wave in the IM cell was
used to ensure that all the ions start IM separation at the same time. No significant differential
migration of ions from the trap TWIG release pulse to the entrance of helium cell was observed
even at shorter delay times, presumably due to the low pressure and high acceleration in the
region. However, the overall drift time is shortened at reduced delay times. Detailed description
of the SID device can be found in Analytical Chemistry 2012 (84) 6016-6023.
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Fig. S2. CID and SID spectra of +18 and +24 CRP at various collision energies. E,qa, is labeled at
the right side of each spectrum. Spectra discussed in the main manuscript are highlighted with
Eiab underlined. It is noted that some of the peaks constitute of multiple overlapping species. For
simplicity, only the major species are labeled in most cases. Generally the spectra do not vary
substantially across different collision energies. For CID of both +18 and +24 CRP, the
abundance of monomer peaks in low m/z region increases at higher collision energies where the
precursor is depleted. Additionally, the absence of products in high m/z region at 4.8 keV Ejy
might be attributed to secondary dissociation. The pattern of SID spectra is similar across all
collision energies for both precursors, featuring monomer products with lower charge than CID.
Likewise, secondary dissociation possibly results in lower abundances of large oligomeric
products at higher collision energies.
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Fig. S3. CID and SID spectra of +13 and +19 ConA at various collision energies. E,q4, is labeled
at the right side of each spectrum. Spectra discussed in the main manuscript are highlighted with
Eiap underlined. Similarly, the overall dissociation pattern remains the same across different
collision energies in all cases. CID spectra of +13 and +19 ConA show exclusively peptide
and/or monomer ejection. Instead, SID spectra show mostly dissociation of monomers carrying
lower charge than CID products. It is noted that the relative abundance of monomers around
2000 - 4000 m/z decreased at higher E4, of 1.3 keV. The shift of distribution to lower charge
states indicates that higher energy deposition in SID leads to more dissociation with less

unfolding.
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Fig. S4. CCSs of CRP pentamer and ConA tetramer precursors as a function of charge state.
ConA dimers in solution equlibrium with ConA tetramers are also included. The buffers used to
generate each charge state are labeled beside the data points. Dashed lines are calculated CCSs
from crystal structures which are shown as insets. Within the charge states examined, most
precursors maintain native-like CCSs as implied by the good agreements with calculated CCSs.
ConA dimers show slight increase for charge states higher than +18, suggesting unfolding of the

dimers with excess charge.
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Fig. S5. Summary of CCS change of the remaining precursors upon CID/SID for a variety of
charge states of (a-d) CRP and (e-i) ConA, including CID of supercharged precursors (d, i). The
same data for the “normal” charged and charge reduced precursors are plotted here for
comparison (a-c, e-h). The color scale is shown on the right, indicating the relative abundance of
the presursor in the spetra.



