Supporting Information

A Novel Colorimetric Potassium Sensor Based on the Substitution of Lead from G-Quadruplex

Huijiao Sun^a, Xiaohong Li^a*, Yunchao Li^a, Louzhen Fan^a, Heinz-Bernhard Kraatz^b*

^aCollege of Chemistry, Beijing Normal University, Beijing, China, 100875

^bDepartment of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4, Canada.

Supplementary figures and discussion

To confirm almost all hairpin DNA 1 transforms to Na⁺-stabilized G-quadruplex, the properties of denatured hairpin DNA 1 are tested by CD and UV-Vis measurements and compared with that of hairpin DNA. The results are shown in Fig. S1. It is observed that similar CD spectra and UV-Vis absorption spectra are obtained for hairpin DNA 1 and denatured hairpin DNA 1, which demonstrates almost all hairpin DNA 1 transforms to Na⁺-stabilized G-quadruplex in the presence of 140 mM Na⁺.

Fig. S1. Properties of hairpin DNA 1 and denatured hairpin DNA 1 in 20 mM Tris-ClO4 buffer (pH = 7.4) containing 140 mM Na⁺: (1) hairpin DNA 1; (2) denatured hairpin DNA 1. (a) CD spectra; (b) UV-vis absorption spectra of 1 μ M hemin in the absence and presence of hairpin DNA 1; (c) UV-Vis absorption spectra of the peroxidation product (ABTS⁻) at 5 min of the ABTS-H₂O₂ reaction in the presence of 0.1 μ M hemin.

In the presence of 140 mM Na⁺ (2 h), the hairpin DNA 1 transforming to Na⁺-stabilized G-quadruplex as illustrated in Fig. S2. In comparison with Na⁺, K⁺ has a higher efficiency with regard to stabilizing G-quadruplex due to the K⁺-stabilized G-quaduplexes more compact than

that Na^+ -stabilized ones.¹ Thus, Na^+ -stabilized G-quadruplex converts to K⁺-stabilized one upon the addition of K⁺. Fig. S2 depicts the conformational switches.

Fig. S2. Schematic of DNA conformational switches and the formed G-quadruplex DNAzyme functions

Fig. S3. CD spectra of 4 μ M hairpin DNA 1 in 20 mM Tris-ClO4 buffer (pH = 7.4): (1) adding + 140 mM Na⁺ for 2 h; (2) adding 10 mM K⁺ to (1) for 2 h; (3) adding 10 μ M Pb²⁺ to (1) for 2h, then adding 10 mM K⁺ for 2h.

Fig. S4. UV-vis absorption spectra of 1 μ M hemin in 20 mM Tris-ClO4 buffer (pH = 7.4) in the absence and presence of (1) 1 μ M Hairpin DNA 1 + 140 mM Na⁺; (2) 10 mM K⁺ + (1); (3) 10 μ M Pb²⁺ + (1), then + 10 mM K⁺.

To test the irreversibility of the process of K^+ substituting Pb^{2+} to form K^+ -stabilized G-quadruplex, we record the UV-Vis absorption spectra of Na⁺-stabilized G-quadruplex with sequentially adding K^+ and Pb^{2+} at 2 h intervals to catalyze ABTS–H₂O₂ reaction system. The result is shown in Fig. S5.

Fig. S5. UV-Vis absorption spectra of the peroxidation product (ABTS--) at 5 min of the ABTS-H₂O₂ reaction in Tris-ClO4 buffer (pH = 7.4) containing 0.1 μ M hemin: (1) 0.1 μ M hairpin DNA 1 + 140 mM Na⁺; (2) 10 mM K⁺ +(1); (3) 100 nM Pb²⁺ + (2); (4) 1 μ M Pb²⁺ + (2); (5) 10 μ M Pb²⁺ + (2).

To determine if K^+ substituting Pb²⁺ to form K⁺-stabilized G-quadruplex is also happened for other G-rich aptamers, we perform the control experiments by UV-Vis measurements with only hairpin DNA 1 instead. The selected aptamers with detailed base sequences are shown in Table S1. As shown in Fig. S6, in the presence of 140 mM Na⁺ and 0.1 µM selected aptamer, weak catalytic activity in ABTS-H₂O₂ and hemin system is observed, reflected by weak absorbance of ABTS⁺⁻ at 420 nm. Upon addition of Pb²⁺, the absorption intensity at 420 nm is decreased, which is corresponding to Na⁺ stabilized G-quadruplex transforming to Pb²⁺-stabilized one. After the next addition of K⁺, nearly no change is observed in absorption intensity. Therefore, we conclude that the processes of K⁺ substituting Pb²⁺ do not happen for these selected G-rich aptamers, which is consistent with the reported assays.¹⁻³

Table S1 The applied DNA sequence (the underlined are complementary pairs) in control experiments

T30695	5'-GGGTGGGTGGGTGGGT-3'
PS2.M	5'-GTGGGTAGGGCGGGTTGG-3'
Hairpin DNA 7	5'-GTGGGTAGGGCGGGTTGGACCCAC-3'
PW17	5'-GGGTAGGGCGGGTTGGG-3'
Hairpin DNA 8	5'-AAGGGTAGGGCGGGTTGGGACCCTT-3'
Hum21	5'-GGGTTAGGGTTAGGGTTAGGG-3'
Hairpin DNA 9	5'-AAGGGTTAGGGTTAGGGGTTAGGGACCCTT-3'

Fig. S6. UV-Vis absorption spectra of the peroxidation product (ABTS⁻) at 5 min of the ABTS-H₂O₂ reaction in Tris-ClO4 buffer (pH = 7.4) containing 0.1 μ M hemin and 0.1 μ M G-rich aptamer: (a) T30695, (b) PS2.M; (c) hairpin DNA 7; (d) PW17; (e) hairpin DNA 8; (f) Hum21; (g) hairpin DNA 9. (1) in the presence of 140 mM Na⁺, (2) adding 10 μ M Pb²⁺ to (1), (3) adding 10 mM K⁺ to (2).

Fig. S7. UV-Vis absorption spectra of the peroxidation product (ABTS⁻) at 5 min of the ABTS–H₂O₂ reaction in Tris-ClO4 buffer (pH = 7.4) containing 0.1 μ M hemin, 140 mM Na⁺ and 0.1 μ M (a) hairpin DNA 2; (b) hairpin DNA 3; (c) hairpin DNA 4; (d) hairpin DNA 5; (e) hairpin DNA 6: (1) adding 10 μ M Pb²⁺, (2) adding 10 mM K⁺ to (1).

To confirm Na⁺-stabilized G-quadruplex convert to Pb^{2+} -stabilized one completely, we record the UV-Vis absorption spectra in 0.1 μ M Na⁺-stabilized G-quadruplex after the addition of different concentrations of Pb^{2+} in the ABTS-H₂O₂ system, and the absorbance at 420 nm is collected, respectively. The relationship of absorbance intensity at 420 nm and the concentrations of Pb^{2+} is shown in Fig. S8. We can observe that the absorbance at 420 nm gradually decreases as the concentration of Pb^{2+} increases from 10^{-9} M to 10^{-6} M and then remains unchanged when the concentration increases to 10 μ M. Thus, 10 μ M Pb^{2+} is sufficient for transforming Na⁺-stabilized G-quadruplex to Pb^{2+} -stabilized one.

Fig. S8. UV-vis absorption spectra for utilizing 0.1 μ M DNAzyme to analyze different concentrations of Pb²⁺: 0 nM (curve a), 10⁻⁹ M (curve b), 10⁻⁸ M (curve c), 10⁻⁷ M (curve d), 10⁻⁶ M (curve e), 10⁻⁵ M (curve f), 5×10⁻⁴ M (curve g), 10⁻⁴ M (curve h).

References

- (1) Li, T.; Wang, E. K; Dong, S. J. Anal. Chem. 2010, 82, 7576–7580.
- (2) Li, T.; Wang, E. K; Dong, S. J. J. Am. Soc. Chem, 2009, 131, 15082-15083.
- (3) Li, T.; Dong, S. J; Wang, E. K. J. Am. Soc. Chem, 2010, 132, 13156-13157.