Electronic Supplementary Information

A novel platform for enhanced biosensing based on the synergy effects of electrospun polymer nanofibers and graphene oxides

Xiaofang Su^{*a,b*}, Jun Ren^{*a*}, Xianwei Meng, ^{*a*}* Xiangling Ren, ^{*a*} and Fangqiong Tang^{*a*}*

 ^a Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Fax: 86 10 62554670; Tel: 86 10 82543521; E-mail: <u>tangfq@mail.ipc.ac.cn</u>
^b Graduate University of the Chinese Academy of Sciences, Beijing, China.

The style of biosensor	Sensitivity	Detection limit	Linear range	references
Electrospun MWCNT-filled PANCAA nanofiber/Pt	$0.18354 \ \mu A \ m M^{-1}$	668 µM	0.668-7 mM	[1]
Electrospun nylon nanofiber/Pt	$1.9 \ \mu A \ mM^{-1}$	6 μΜ	1-10 mM	[2]
Electrospun TiO ₂ nanofiber/Pt	9.25 $\mu A \text{ cm}^{-2} \text{ mM}^{-1}$	10 µM	0.01-6.98 mM	[3]
Graphene/ionic liquid/Au	$0.64~\mu A~mM^{-1}$	376 µM	2-20 mM	[4]
Graphene/CdS/GCE	$1.76 \ \mu A \ cm^{-2} \ mM^{-1}$	700 µM	2–16 mM	[5]
Graphene/CNT/GCE	$1.27 \ \mu A \ cm^{-2} \ mM^{-1}$	unkown	1–8 mM	[6]
Graphene/Ag/GCE	unkown	100 µM	2–10 mM	[7]
The proposed biosensor	<u>11.98 μA cm⁻² mM⁻¹</u>	<u>5 μM</u>	<u>0.005-3.5 mM</u>	This paper

 $\label{eq:stables} \textbf{Table S1} \ \textbf{The comparison of the proposed biosensor with other work.}$

Fig. S1 The TEM images of (A) the graphene oxides at low magnification, the inset is the selected –area electron diffraction pattern from a graphene oxide nanosheet, (B)-(C) the graphene oxide at high magnification, (D) the PVA/chitosan/GOD nanofiber, (E)-(F) the PVA/chitosan/GOD/GO nanofiber.

Fig. S2 (A) The measurement stability of the nafion/PVA/chitosan/GOD/GO/Pt electrode in 2.5 mM glucose. (B) The anti-interference study of the nafion/PVA/chitosan/GOD/GO/Pt electrode in 5 mM glucose, with addition of 0.1 mM AA, 0.1 mM UA, 3 mM sucrose and 3 mM lactose.

Fig. S3 (A) The current response to choline chloride of the choline biosensor. (B) The calibration curve for choline chloride of the choline biosensor.

References

- 1 Z. G. Wang, Y. Wang, H. Xu, G. Li, Z. K. Xu, J. Phys. Chem. C, 2009, 113, 2955.
- 2 M. Scampicchio, A. Arecchi, N. S. Lawrence, S. Mannino, Sens. Actuators B, 2010, 145, 394.
- 3 H. Tang, F. Yan, Q. D. Tai, H. L. W. Chan, Biosens. Bioelectron., 2010, 25, 1646.
- 4 M. H. Yang, B. G. Choi, H. Park, W. H. Hong, S. Y. Lee, T. J. Park, *Electroanalysis*, 2010, 22(11), 1223.
- 5 K. Wang, Q. Liu, Q. M. Guan, J. Wu, H. N. Li, J. J. Yan, Biosens. Bioelectron., 2011, 26, 2252.
- 6 J. L. Chen, X. L. Zheng, F. J. Miao, J. Appl. Electrochem., 2012, 42, 875.
- 7 Y. W. Zhang, S. Liu, L. Wang, X. Y. Qin, J.Q. Tian, W. B. Lu, G. H. Chang, X. P. Sun, RSC Adv., 2012, 2, 538.