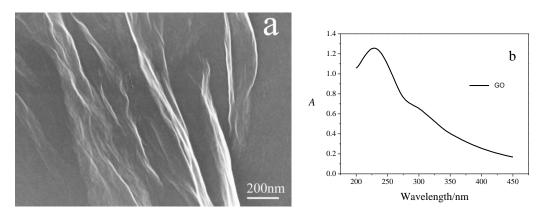
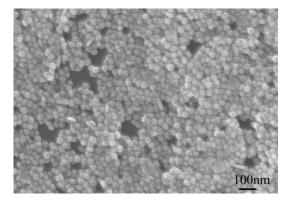
Electronic Supplementary Information

One-pot green synthesis of graphene oxide/gold nanocomposites as SERS substrates for malachite green detection


Wenliang Fu, ^a Shujun Zhen*^a and Chengzhi Huang*^{a,b}

^aEducation Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and


Chemical Engineering, and ^b College of Pharmaceutical Sciences, Southwest University, 400715 Chongqing, P.R.

China

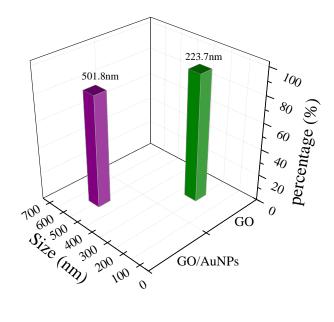

Characterization of GO/AuNPs hybrids

Fig. S1 Features of as-prepared GO. (a) Scanning electron microscopy image, (b) UV-vis absorption spectrum. Two absorption peaks at 228 nm and 300 nm, which attributed to the π - π * transition of carbon double bonds and n- π * transition of carbonyl groups respectively.

Fig. S2 Scanning electron microscopy of gold nanoparticles synthesized with the tyrosine as reducing agents in the pH 7.0 without GO.

Fig. S3 DLS measurements of GO and GO/AuNPs hybrids in the aqueous solution. 95.8% pure GO had the main size distribution of 224 nm, while GO/AuNPs hybrids had main size distribution of 502 nm. The obvious change of size distribution suggested that the GO/AuNPs hybrids indeed formed in solution.

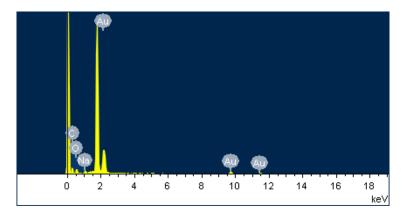


Fig. S4 Energy-dispersive X-ray spectrum analysis of GO/AuNPs hybrids.

REFERENCE

1. G.-h. Moon, H.-i. Kim, Y. Shinc and W. Choi, *RSC Adv*, 2012, **2**, 2205.