Nanostructured a-Fe<sub>2</sub>O<sub>3</sub> platform for the electrochemical sensing of folic acid

Thandavarayan Maiyalagan,<sup>a</sup> J. Sundaramurthy,<sup>b,c</sup> P. Suresh Kumar,<sup>c</sup> Palanisamy Kannan,<sup>d,\*</sup> Marcin Opallo,<sup>d,\*</sup> and Seeram Ramakrishna<sup>b,c,\*</sup>

<sup>a</sup> School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459s

<sup>b</sup> Centre for Nanofibers and Nanotechnology, National University of Singapore, Singapore 117576

<sup>c</sup> Department of Mechanical Engineering, National University of Singapore, Singapore 117576

<sup>d</sup> Institute of Physical Chemistry, Polish Academy of Sciences,44/52 ul. Kasprzaka, 01-224 Warszawa, Poland

\* Corresponding authors email: <u>seeram@nus.edu.sg</u> (Ramakrishna); <u>ktpkannan@gmail.com</u> (Kannan); <u>mopallo@ichf.edu.pl</u> (Opallo)

Tel: +65-6516 6593; Fax: +65-6872 5563

## **Supporting Information**



**Fig. S1.** (A) DPVs obtained for  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanofibers modified GC electrode in 0.2 M PB solution containing 100  $\mu$ M FA at pH values of 5.2, 6.2, 7.2, 8.2, 9.2 and 10.2 (a – f). (B) shows effect of pH on the anodic peak current.