Supplementary materials

New Probe Design Strategy by Cooperation of Metal/DNA-Ligation and Supermolecule Inclusion Interaction: Application to Detection of Mercury Ions(II)

Xiaoxia Gao, Ting Deng, Jishan Li, Ronghua Yang, Guoli Shen, Ruqin Yu

Figure S1. Spetra of 100 nM P2 upon different concentrations of $Cu^{2+}(A)$ and $Cd^{2+}(B)$. (Arrow is pyrene-dimer fluorescence change with the increase concentration of Cu^{2+} or Cd^{2+}). Excitation wavelength was 345 nm.

Figure S2. Fluorescence emission spectra of P1 (A) or P2 (B) upon different concentrations of Hg^{2+} (arrow is pyrene-dimer fluorescence change with the increase concentration of Hg^{2+}). The concentration of P1 or P2 is 100 nM and the excitation was at 345 nm.

Figure S3. Effect of γ -CD on the pyrene dimer. (A) Fluorescence records of 100 nM P2 upon different concentrations of Hg²⁺ in the presence of 5mM γ -CD. (B) Fluorescence decays of P2 under different conditions. Curve a, 100 nM of P2; Curve b, 100 nM of P2 + 5 μ M of Hg²⁺; Curve c, 100 nM of P2 + 5 mM of γ -CD; Curve d, 100 nM of P2 + 5 mM of γ -CD + 5 μ M of Hg²⁺.

Figure S4. Optimization of the concentration of block DNA (B4). Excitation wavelength was 345 nm and fluorescence records were carried out at 478nm. Where F_0 and F are the fluorescence intensity of P1 in the absence and presence of 5 μ M Hg²⁺, respectively. The reaction solution contains 100 nM of P1 and 5 mM of γ -CD.

Figure S5. Fluorescence spectra of 100 nM of P1 and 200 nM of B4 with different concentration of γ -CD. Excitation wavelength was 345 nm (arrow is pyrene-dimer fluorescence change with the increase concentration of γ -CD).