Supporting Information

A Real-Time Colorimetric and Ratiometric Fluorescent Probe for Sulfite

Ming-Yu Wu, Ting He, Kun Li*, Ming-Bo Wu, Zheng Huang and Xiao-Qi Yu*

Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China Fax: (86)-28-85415886; Tel: (86)-28-85415886; E-mail: xqyu@scu.edu.cn; kli@scu.edu.cn.

Content:

1. Quantum Yields	S2
2. Detection limit	S2-S3
3. The liner relationship of the fluorescent signal ratio to the concentration of sulfite.	S3
4. The fluorescent emission spectrum of probe 1 with S ₂ O ₄ ²⁻ and S ₂ O ₅ ²⁻	S3
5. ¹ H NMR and ¹³ C NMR spectrums	S4-S12
6. MS	S13-S16
7. ¹ H- ¹ H COSY spectrums of probe 1 and probe 2	S17-S18

1. Quantum Yields.

Quantum yields were determined using fluorescein as a standard according to the published method.¹ The quantum yield was calculated according to the equation: $(\Phi_{sample} = \Phi_{standard} * (I_{sample} / I_{standard}) * (A_{sample} / A_{standard}))$; where Φ is the quantum yield, $\Phi_{standard} = 0.85$ in 0.1 M NaOH; I_{sample} and $I_{standard}$ are the integrated fluorescence intensities of the sample and the standard, A_{sample} and $A_{standard}$ are the optical densities, at the excitation wavelength, of the sample and the standard, respectively.

Quantum yield of Probe 1: $\Phi = 0.028$. Quantum yield of Probe 2: $\Phi = 0.089$

After the complete reaction with sulfite, the Quantum yield of Probe 1: $\Phi = 0.006$ Quantum yield of Probe 3: $\Phi = 0.006$

2. Detection limit.

The detection limit was calculated based on the fluorescence titration.² Probe 1 was employed at 10 μ M and the slit was adjusted to 5 nm/5 nm. To determine the S/N ratio, the emission intensity of Probe 1 without Na₂SO₃ was measured by 10 times and thestandard deviation of blank measurements was determined. Under the present conditions, a good linear relationship between the fluorescence intensity and the Na₂S concentration could be obtained in the 0 – 200 μ M (R = 0.997), as shown in Fig. S1. The detection limit is then calculated with the equation: detection limit = $3\sigma_{bi}/m$, where σ_{bi} is the standard deviation of blank measurements, m is the slope between intensity versus sample concentration. The detection limit was measured to be 58 μ M at S/N = 3 (signal-to-noise ratio of 3:1).

A) Fluorescence response of Probe **1** (10 μ M) to SO₃²⁻ (0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 200 μ M, 0-20 eq) (λ_{ex} = 446 nm. Slit: 5 nm/5 nm, λ_{scan} = 460 – 700 nm) in DMF:buffer = 2:8.

B) Fluorescence intensity ratio at 480 nm and 578 nm (I_{480}/I_{578}) of Probe 1 (10 μ M) upon addition of SO₃²⁻ (0–200 μ M, 0-20 eq) (λ_{ex} = 446 nm. Slit: 5 nm/5 nm) in DMF:buffer = 2:8.

3. The liner relationship of the fluorescent signal ratio to the concentration of sulfite

Fig. S2 Fluorescence intensity ratio at 501 nm and 625nm (I_{501}/I_{625}) of Probe 2 (10 μ M) upon addition of SO₃²⁻ (0–2000 μ M, 0-200 eq) ($\lambda_{ex} = 468$ nm. Slit: 3 nm/3 nm) in DMF: buffer = 5:5.

4. The fluorescent emission spectrum of probe 1 with $S_2 {O_4}^{2\text{-}}$ and $S_2 {O_5}^{2\text{-}}$

¹H NMR and ¹³C NMR spectrums.

ESI-MS and HRMS

S19