SUPPORTING INFORMATION

In-Situ Analysis of Corrosion Inhibitors using a Portable Mass Spectrometer with Paper Spray Ionization

Fred P.M. Jjunju, Anyin Li, Abraham K. Badu-Tawiah, Pu Wei, Linfan Li, Zheng Ouyang, Iman. Roqan and R. Graham Cooks*

Supporting information is summarized in the table below

Торіс	Title of Topic		
Topic 1 (Figure S1)	Calibration curve for the quantitative analysis of ammonium salts in oil matrix using a commercial ion trap mass spectrometer		
Topic 2 (Figure S2)	Experimental setup for the analysis of corrosion inhibitors using a bench- top commercial mass spectrometer coupled with paper spray ionization.		
Topic 3 (Figure S3-6)	Analysis of the corrosion inhibitor model compounds using a bench-top commercial mass spectrometer.		
Topic 4 (Figure S7-9)	 Analysis of the corrosion inhibitor model compounds in the oil mixture (7-9) using a bench-top commercial mass spectrometer. 		
Topic 5 (Table S1)	Structures and Product Ions of CID of the Salt [C ₆ H ₅ CH ₂ N (CH ₃) ₂ R] ⁺ Cl ⁻ Analyzed in Pump Oil by PS-MS using Benchtop and Miniature Instruments		

1. Quantitative analysis of the ammonium salts in oil

Fig S1. Calibration curve for the quantitative analysis of ammonium salts in oil matrix using a commercial ion trap mass spectrometer

2. Experimental setup for the analysis of corrosion inhibitors using a benchtop commercial mass spectrometer coupled with paper spray ionization

Figure S2. Paper spray ionization mass spectrometry for *in situ* analysis of corrosion inhibitors using a commercial benchtop mass spectrometer

3. Analysis of the corrosion inhibitor model compounds using a benchtop commercial mass spectrometer

Figure S3. Positive PS-MS mass spectrum of hexadecyltrimethylammonium bromide. Insert (i) shows the isotopic distribution of of the analyte,tandem mass spectrometry (MS/MS) of the hexadecyltrimethylammonium cation at m/z 284.0 was not returning good signal since the expected major fragment is below the low mass cut off the instrument.

Figure S4. Positive PS-MS mass spectrum of tetradodecylammonium bromide. Insert (i) shows the isotopic distribution of the analyte, (ii) – (ii) Tandem mass spectrometry (MS/MS) of the tetraoctylammonioum cation at m/z 691.0 gives a major fragment ion at m/z 522.0 with a alkene loss of 112.0 and a minor fragment ion at 520.0 with a alkane loss of 114, which confirm the structure. Again (iii) MS/MS/MS of the major fragment ion at m/z 522.0 (major) fragments further to give an ion at m/z 354.5 and ion at m/z 352.5 with a neutral loss of -[112]and -[114] respectively further confirming the identity of the compound

Figure S5. Positive ion PS-MS mass spectrum of tetrahexylammonium bromide. Insert (i) shows the isotopic distribution of the analyte ion, (ii) – (iii) Tandem mass spectrometry (MS/MS) of the tetrahexylammonium cation at m/z 354.7 gives a major fragment ion at m/z 270.0 with a loss of alkene – [84] and a minor fragment ion at 268.5 with a loss of alkane –[86] that confirms the structure. Again (iii) MS/MS/MS of the major fragment ion at m/z 270.0 fragments further to give an ion at m/z 186.0 (major) and ion at m/z 184.0 (minor) with a neutral loss of –[84] and –[86] respectively further confirming the identity of the compound

Figure S6. Positive ion PS-MS mass spectrum of benylhexadecyldimethylammonium chloride. Insert (i) shows the Isotopic distribution of the analyte ion, (ii) Tandem mass spectrometry (MS/MS) of the benylhexadecyldimethylammonium cation at m/z 360 gives a major fragment ion at m/z 268 with a loss of alkene –[92] that confirms the structure

4. Analysis of the corrosion inhibitor model compounds in the oil mixture using a benchtop commercial mass spectrometer

Figure S7. Positive ion mode paper spray mass spectrum for artificial mixtures of model compounds analyzed using a benchtop instrument. Tetrabutylammonium bromide was observed at m/z 242.0, hexadecytrimethylammonium bromide at m/z 284.0, benzylhexadecyldimethylammonium chloride at m/z 360.0, tetraoctylammonium bromide at m/z 466.6 and tetradodecylammonium bromide at m/z 691.0.

Figure S8. Typical positive ion paper spray mass spectra for a mixture of alkyl dimethylbenzyl ammonium chloride salts $[C_6H_5CH_2N(CH_3)_2R]Cl$ where R is predominantly n- $C_{12}H_{25}$ (also contains small amounts of m/z 332 (C_{14}) and m/z 360 (C_{16}) homologs) standard analyzed using a benchtop ion trap mass spectrometer. The trace levels of C_{16} homolog, are manifest in the relative abundances compared with other components in the mixture.

Figure S9. Ion chronograms for the for alkyl dimethylbenzyl ammonium chloride $[C_6H_5CH_2N(CH_3)_2R]Cl$ where R is predominantly n-C₁₂H₂₅; data for the homologs C₁₄ (*m/z*) 332, C₁₂ (*m/z*) 304, and C₁₆ (*m/z*) 360 are shown.

Active corrosion compound	MW (Cation)	MS/MS Transitions	Ion Loss
Quat C ₁₂	304	$m/z 304 \rightarrow 212$	92
Quat C ₁₄	332	m/z 332 → 240	92
Quat C ₁₆	360	m/z 360 → 268	92

Table S1 Structures and Product Ions of CID of the Salt $[C_6H_5CH_2N (CH_3)_2R]^+Cl^-$ Analyzed in Pump Oil by PS-MS using Benchtop and Miniature Instruments