O- tert- butyldiphenylsilyl coumarin and dicoumarol: A case toward selective sensing of F⁻ ions in organic and aqueous environments

Kumaresh Ghosh^{*a}, Debasis Kar^a, Roland Fröhlich^b, Asoke, P. Chattopadhyay^a, Asmita Samadder^c, Anisur Rahman Khuda-Bukhsh^c

 ^a Department of Chemistry, University of Kalyani, Kalyani, Nadia-741235, India, Email: ghosh_k2003@yahoo.co.in, Fax: +91 33258282
^bInstitut für Organische Chemie, Universität Münster, Corrensstr.40, D48149 Münster ^cDepartment of Zoology, University of Kalyani, Kalyani-741235, India.

1. Change in emission of receptor 1 with various anions in CHCl₃.

Figure S1. Fluorescence titration spectra for **1** (c = 7.01 x 10^{-5} M) with (a) HSO₄⁻, (b) Cl⁻, (c) Br⁻, (d) I⁻, (e) AcO⁻ (f) H₂PO₄⁻ in CHCl₃ (in all cases [anion] = 1x 10^{-3} M).

2. Change in absorbance of receptor 1 with various anions in CHCl₃.

Figure S2. Change in absorbance of receptor **1** (c = 7.01 x 10^{-5} M) with (a) HSO₄⁻, (b) Cl⁻, (c) Br⁻, (d) l⁻, (e) AcO⁻ (f) H₂PO₄ in CHCl₃ (in all cases [anion] = 1x 10^{-3} M).

3. Change in emission of receptor 1 with various anions in CH₃CN.

Figure S3. Fluorescence titration spectra for **1** (c = 9.92 x 10^{-5} M) with (a) HSO₄⁻, (b) Cl⁻, (c) Br⁻, (d) l⁻, (e) AcO⁻ (f) H₂PO₄⁻ in CH₃CN (in all cases [anion] = 1x 10^{-3} M).

4. Change in absorbance of receptor 1 with various anions in CH₃CN.

Figure S4. Change in absorbance of receptor **1** (c = 9.92 x 10^{-5} M) with (a) HSO₄⁻, (b) Cl⁻, (c) Br⁻, (d) l⁻, (e) AcO⁻ (f) H₂PO₄ in CH₃CN (in all cases [anion] = 1x 10^{-3} M).

5. Emission profiles for 1a with the anions in CHCl₃ and CH₃CN.

Figure S5. Change in fluorescence ratio at 382 nm for **1a** ($c = 5.15 \times 10^{-5}$ M) upon addition of 2 equiv of TBA salt of various anions in CHCl₃ ($\lambda_{ex} = 310$ nm).

Figure S6. Change in fluorescence ratio at 395 nm for **1a** ($c = 6.53 \times 10^{-5}$ M) upon addition of 2 equiv of TBA salt of various anions in CH₃CN ($\lambda_{ex} = 310$ nm).

6. Relative emission change of 1 (taken in CH₃CN) upon addition of aq. solutions of potassium salts of different anions.

Figure S7. Relative fluorescence changes of 1 ($c = 5.92 \times 10^{-5}$ M) in CH₃CN after treatment with 1 equiv amounts of aqueous solution of different salts of various anion ($\lambda_{ex} = 315$ nm).

7. Selectivity study in aq. CH₃CN with 1.

Figure S8. Change in emission of $1 (c = 5.92 \times 10^{-5} \text{ M})$ in CH₃CN in presence and absence of 1 equivalent amounts of aqueous solution of fluoride and other anions (taken as their potassium salts).

8. Change in absorbance of receptor 2 with various anions in CHCl₃.

Figure S9. Change in absorbance of receptor **2** ($c = 6.50 \times 10^{-5} \text{ M}$) with (a) HSO₄⁻, (b) Cl⁻, (c) Br⁻, (d) l⁻, (e) AcO⁻ (f) H₂PO₄ in CHCl₃ (in all cases [anion] = 1x 10⁻³ M).

9. Change in emission of receptor 2 with various anions in CHCl₃.

Figure S10. Fluorescence titration spectra for 2 ($c = 6.50 \times 10^{-5} M$) with (a) HSO₄, (b) Cl⁻, (c) Br⁻, (d) l⁻, (e) AcO⁻ (f) H₂PO₄ in CHCl₃ (in all cases [anion] = 1x 10⁻³ M).

10. Color change for 2 and 2a in CHCl₃

Figure S11. (a) Dicoumarol **2a** (c = 6.15×10^{-3} M) in CHCl₃, (b) Dicoumarol **2a** (c = 5.85×10^{-3} M) with 10 equivalent amounts of tetrabutylamonium hydroxide (c = 1×10^{-3} M) ion in CHCl₃, (c) dicumarol **2a** (c = 5.78×10^{-3} M) with 10 equivalent amounts of tetrabutylamonium fluoride (c = 1×10^{-3} M) in CHCl₃, (d) compound **2** (c = 6.28×10^{-3} M) with 10 equivalent amounts of tetrabutylamonium fluoride ion (c = 1×10^{-3} M) in CHCl₃, (e) Compound **2** (c = 6.36×10^{-3} M) in CHCl₃, (f) compound **2** (c = 6.28×10^{-3} M) with 10 equivalent amounts of tetrabutylamonium fluoride ion (c = 1×10^{-3} M) in CHCl₃, (e) Compound **2** (c = 6.28×10^{-3} M) with 10 equivalent amounts of tetrabutylamonium hydroxide ion (c = 1×10^{-3} M) in CHCl₃.

11. Change in emission of 2 and 2a in the presence of large excess of F⁻ in CHCl₃.

Figure S12. (a) Change in emission of **2** ($c = 5.85 \times 10^{-5}$ M) in the presence of 43 equivalent amounts of tetrabutylammonium salts of F⁻ in CHCl₃; (b) Change in emission of **2a** ($c = 6.01 \times 10^{-5}$ M) in the presence of 15 equivalent amounts of tetrabutylammonium fluoride.

Figure S13. Change in absorbance of receptor **2** ($c = 3.50 \times 10^{-5} \text{ M}$) with (a) HSO₄⁻, (b) Cl⁻, (c) Br⁻, (d) I⁻, (e) F⁻, (f) AcO⁻ and (g) H₂PO₄⁻ in CH₃CN (in all cases [anion] = 1x 10⁻³ M).

Figure S14. Fluorescence titration spectra for 2 (c = $3.50 \times 10^{-5} \text{ M}$) with (a) HSO₄, (b) Cl⁻, (c) Br⁻, (d) l⁻, (e) F-(f)AcO⁻, (g) H₂PO₄⁻ in CH₃CN (in all cases [anion] = $1 \times 10^{-3} \text{ M}$).

14. Color change for 2 in CH₃CN

Figure S15. The photographs of solutions under ambient light of (a) **2** ($c = 5.68 \times 10^{-3} \text{ M}$) itself and in presence of 15 equivalent amounts of tetrabutylammonium salts of different anions in CH₃CN.

Electronic Supplementary Material (ESI) for Analyst This journal is O The Royal Society of Chemistry 2013

15. Selectivity study in CHCl₃ with 2.

Figure S16. Change in emission of **2** ($c = 6.10 \times 10^{-5}$ M) in presence and absence of 10 equivalent amounts of fluoride and other anions (taken as their tetrabutylammonium salts) in CHCl₃.

16. Change in fluorescence ratio for 2 and 2a in CH₃CN

Figure S17. (a) Change in fluorescence ratio at 378 nm for (a) **2** ($c = 3.5 \times 10^{-5}$ M) and (b) **2a** ($c = 6.19 \times 10^{-5}$ M) upon addition of 15 equiv of TBA salt of various anions in CH₃CN (λ_{ex} for **2** and **2a** are 315 nm and 310 nm, respectively).

17. Selectivity study in aq. CH₃CN with 2.

Figure S18. Change in emission of **2** (6.35 x 10^{-5} M) in CH₃CN upon addition of 10 equiv. amounts of aq. solution of KF (c = 2 x 10^{-3} M) to **2** containing other anions in 5 equivalent amounts.

18. ¹H NMR change for 1 with F⁻ in CDCl₃.

Figure S19. Partial ¹H NMR (400 MHz) of **1** ($c = 3.85 \times 10^{-3}$ M) in the absence and presence of equivalent amount of tetrabutylammonium fluoride in CDCl₃. (the number indicates the equivalent amounts added)

19. Rate constant determination for 2 in aq. CH₃CN

Figure S20. Plot for first order reaction of 2 with F⁻ in aq. CH₃CN.

20. Rate constant determination for 2 in CHCl₃

Figure S21. Plot for first order reaction of 2 with F⁻ in CHCl₃.

21. Fluorescence profile of 1 with different concentrations of aq. KF.

Figure S22. Change in fluorescence ratio ($\Delta I/I_0$) of **1** upon addition of 1 equivalent amount of aqueous solution of KF of different concentrations (A = 2 x 10⁻³ M; B = 2 x 10⁻⁴ M; C = 10⁻⁵ M; D = 2 x 10⁻⁶ M).

22. Fluorescence profile of 1 with different concentrations of aq. KF.

Figure S23. Change in fluorescence ratio ($\Delta I/I_0$) of receptor **2** upon addition of 2.5 equivalent amounts of aqueous solution of KF of different concentrations (A = 2 x 10⁻³ M; B = 2 x 10⁻⁴ M; C = 10⁻⁵ M; D = 2 x 10⁻⁶ M).

23. DST optimized geometries.

Figure S24. DFT optimized geometries of (a) 1 and (b) 2 in gas phase.

24. MTT assay.

Figure S25. MTT assay for receptor 1.

Figure S26.MTT assay for receptor 2.

¹H NMR (400 MHz, CDCl₃) of 1

¹³C NMR (100 MHz, CDCl₃) of 1

¹H NMR (400 MHz, CDCl₃) of 2

¹³C NMR (100 MHz, CDCl₃) of 2

Electronic Supplementary Material (ESI) for Analyst This journal is O The Royal Society of Chemistry 2013

Mass of 2

