Supporting Information for

A Novel Fluorescent "Turn-Off/Turn-On" System for the Detection of Acid Phosphatase Activity

Pu Guo, [‡]Shengyong Yan, [‡]Yimin Zhou, Changcheng Wang, Xiaowei Xu, Xiaocheng Weng, Xiang Zhou*

College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Hubei, Wuhan, 430072, P. R. of China, Corresponding Author Email Address: <u>xzhou@whu.edu.cn</u>

Table of Contents

Materials, methods and instruments	S 3
General procedure for the synthesis of Probe 1	S3
Changes in the emission spectrum of probe 1 upon the addition of ATP, Na	${}_{5}P_{3}O_{10}$,
(NaPO ₃) _n S	\$4- \$ 5
Linearity of ACP and fluorescence intensity	S5
Influence of anions with large sizes	S6-S8
References	S9

Materials, methods and instrumentation.

The following solvents, compounds and reagents were commercially available: perylene tetracarboxylic dianhydride, 3-dimethylaminopropylamine, were bought from Sigma-Aldrich. Isobutanol, ethanol, NaOH, methyl iodide, toluene, ether were bought from SCRC (Shanghai, China). Acid phosphatase from potato (ACP), ATP, (NaPO₃)₆, (NaPO₃) _n and Na₅P₃O₁₀ was bought from Sigma-Aldrich. KMoO₄ was bought from Alfa Aesar. The other proteins and enzymes such as BSA, thrombin, nitroreductase, tyrosinase and trypsase were bought from Sigma-Aldrich.

¹H and ¹³C NMR spectra were recorded on Varian Mercury 300 spectrometers, respectively. API-ES were recorded on Agilent LC/MS 6120B. Fluorescent emission spectra were collected on PerkinElmer LS 55 with an excitation wavelength of 495 nm, the excitation and emission slit widths were 10 and 6 nm, respectively. UV absorption spectra were collected on SHIMADZU UV-2550. Quartz cuvettes with 2mL volume were used for emission measurements. Unless otherwise specified, all spectra were taken at an ambient temperature.

General procedure for the synthesis of Probe 1^[1]

Scheme S1. Synthesis of Probe 1

Probe **1** was prepared by the literature methods^[1].

Fig. S1 Changes in the emission spectrum of probe 1 (1 μ M) upon the addition of ATP at different concentrations (0–500 nm).

Fig. S2 Changes in the emission spectrum of probe 1 (1 μ M) upon the addition of Na₅P₃O₁₀ at different concentrations (0–500 nm).

Fig. S3 Changes in the emission spectrum of probe $1 (1 \mu M)$ upon the addition of $(NaPO_3)_n$ at different concentrations (0–500 nm).

Fig. S4 Linearity on concentrations of ACP and fluorescence intensity of reaction solution.

Fig. S5 The influence of CO_3^{2-} on detection of ACP using our method. Probe 1 (1 μ M), Na₂CO₃ (4.2 μ M), (NaPO₃)₆ (700 nM), ACP (100 μ units / mL).

Fig. S6 The influence of SO_4^{2-} on detection of ACP using our method. Probe 1 (1 μ M), Na₂SO₄ (4.2 μ M), (NaPO₃)₆ (700 nM), ACP (100 μ units / mL).

Fig. S7 The influence of ClO_4^- on detection of ACP using our method. Probe 1 (1 μ M), NaClO₄ (4.2 μ M), (NaPO₃)₆ (700 nM), ACP (100 μ units / mL).

Electronic Supplementary Material (ESI) for Analyst This journal is The Royal Society of Chemistry 2013

References:

1. B. Wang, C. Yu, Angew. Chem. Int. Ed. 2010, 49, 1.