Supplementary Information

for

Nanosized metal–organic framework of Fe-MIL-88NH₂ as a novel peroxidase mimic and used for colorimetric detection of glucose

Ya Li Liu, ^a Xi Juan Zhao, ^a Xiao Xi Yang ^b and Yuan Fang Li * ^a

^a Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, School of

Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China. E-mail:

liyf@swu.edu.cn, Tel: (+86) 23 68254659, Fax: (+86) 23 68367257.

^b College of Pharmaceutical Science, Southwest University, Chongqing 400716, China

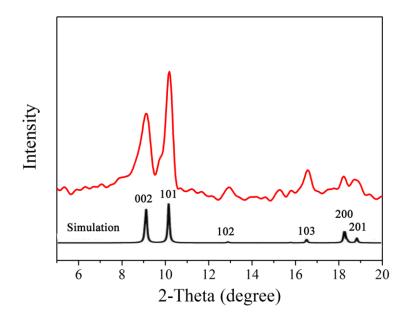
Experimental section

Peroxidase-like activity measurements. То examine the capability of Fe-MIL-88NH₂ MOF as catalyst for the oxidation of TMB, kinetic measurements were carried out in time course mode by monitoring the absorbance change at 650 nm. Experiments were performed using 0.04 mg/mL Fe-MIL-88NH₂ MOF in 50 µL 0.2 M NaAc buffer solution (pH 4, 45 0 C) with fixed concentration of H₂O₂ (1mM) and varying concentration of TMB from 0.1 to 1.5 mM. Similarly, the kinetic analyses with H₂O₂ as the substrate were performed using 0.04 mg/mL of Fe-MIL-88NH₂ MOF with fixed concentration of TMB (1mM) and varying concentration of H₂O₂ from 1-30 mM. Apparent kinetic parameters were calculated on the basis of the Michaelis- Menten equation(eqs. 1).¹

$$V_0 = V_{\max}[S] / [S] + K_m$$
 (eqs. 1)

 V_0 is the initial catalytic rate, V_{max} is the maximum rate conversion, which is obtained when the catalytic sites on the enzyme are saturated with substrate, [S] is the substrate concentration, and K_{m} is the apparent Michaelis–Menten equation. Maximum initial velocity (V_{max}) and Michaelis–Menten constant (K_{m}) were obtained using Lineweaver–Burk plots.²

Absorption values obtained by timescan mode at 650 nm were converted to the concentration of TMB derived oxidation products by the Beer- Lambert Law (eqs. 2), in which *A* is the absorption at 650 nm, *b* is the optical length of 1.0 cm, ε and *c* are the molar absorption coefficient of 39000 M⁻¹cm⁻¹ and concentration for TMB derived oxidation products,² respectively.


 $A = \varepsilon bc$ (eqs. 2)

Electron spin resonance (ESR) measurements. The ESR signal was measured by a Bruker ESP 300E (X-band) spectrometer with microwave bridge (receiver gain, 1×10^5 ; modulation amplitude, 2 Gauss; microwave power, 10 mW; modulation frequency, 100 kHz). Samples solution were obtained at room temperature by adding 50 µL of 0.2 M NaAc buffer (pH=4.0), 5 µL of 30% H₂O₂, and 20 µL DMPO and 50 µL of 1.0 mg/mL Fe-MIL-88NH₂ MOF ultra-pure water into a 1 mL plastic tube. Then this sample solution was transferred to a quartz capillary tube and placed in the ESR cavity. Under the UV-irradiation at 355 nm, EPR signal was detected.

Cell viability assays. The 2×10^6 cells / ml A549 cell in Minimal Essential Medium supplemented with 2 % fetal bovine serum was added to each well of a 96-well plate (100 µl/well). The cells were cultured first for 24 h in an incubator (37 ^oC, 5% CO₂), and for another 24 h, the culture medium was replaced with 100µL of MEM containing (1) 10µL of different doses of Fe-MIL-88NH₂ MOF (0.2, 0.4, 0.6, 0.8, 1.0 mg/mL); (2) 10 µL of different concentration of H₂O₂ (0.8, 1, 2, 5, 8 mM); (3) 10 µL of 0.2 mg/mL Fe-MIL-88 NH₂ MOF and 10µL of different concentration of H₂O₂ (0.8, 1, 2, 5, 8 mM). Followed by removing the culture medium, 10µL of CCK-8 solution was added to every cell well which was washed with PBS buffer twice and contained MEM (2% fetal bovine serum) 90 µL. The cells were further incubated for 1 h. The optical density (OD) of the mixture was measured at 450 nm with a Microplate Reader Model. The cell viability was estimated according to the following equation:

Cell viability [%] = (OD sample- OD blank) / (OD control- OD blank) \times 100%

Additional figures

Fig. S1 Powder XRD patterns for Fe-MIL-88NH₂ MOF (red), the simulated XRD pattern for the MIL-88 (Cr) structure(black) created from reference documents.³

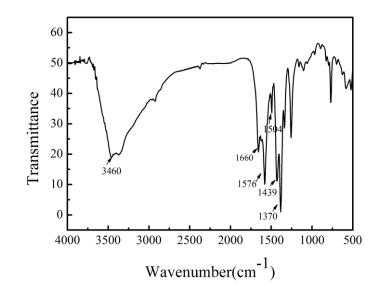


Fig. S2 FTIR spectra of Fe-MIL-88NH₂ nanocrystals

The Fourier transform infrared (FTIR) spectroscopy shows the similar characteristic bands with reference documents.^{4, 5}

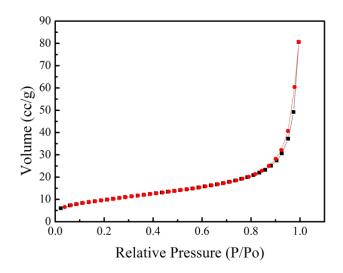
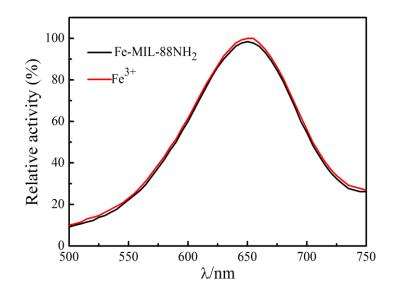
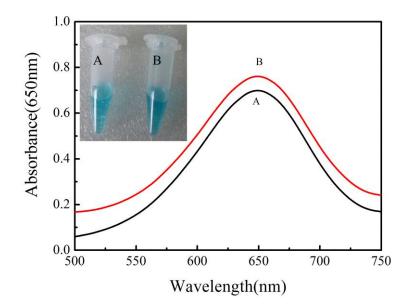




Fig. S3 N_2 adsoption/desorption isotherms of Fe-MIL-88NH₂ nanocrystals at 77 K.

Fig. S4 The catalytic activity of Fe-MIL-88NH₂ MOF and Fe³⁺ ion in this reaction. Condition:incubated at 45 0 C in 50 µL of 0.2 M pH 4.0 NaAc buffer (TMB, 1 mM; H₂O₂, 50µM; Fe-MIL-88NH₂, 0.02 mg/mL, Fe³⁺7.5×10⁻⁵ M) for 20 min.

Fig. S5. Demonstration that peroxidase-like activity of Fe-MIL-88NH₂ MOF activity does not result from iron leaching. (A) TMB+H₂O₂+re-dispersed; (B) TMB+H₂O₂+Fe-MIL-88NH₂; Fe-MIL-88NH₂ was first incubated in NaAc buffer (pH 4.0) for 20 min, and then centrifuged at 15000 rpm for 30 min, the precipitate was again re-dispersed using ultrapure water. The activity of the re-dispersed solution was then compared to that of the intact Fe-MIL-88NH₂ MOF, incubated at 45 $^{\circ}$ C in 50 µL of 0.2 M pH 4.0 NaAc buffer (TMB, 1 mM; H₂O₂, 50µM; Fe-MIL-88NH₂, 0.04 mg/mL) for 20 min. Inset is the photograph.

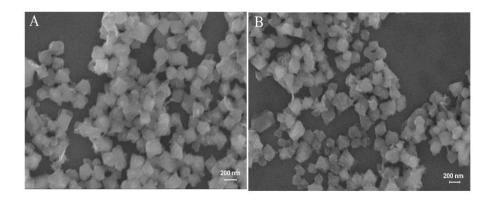
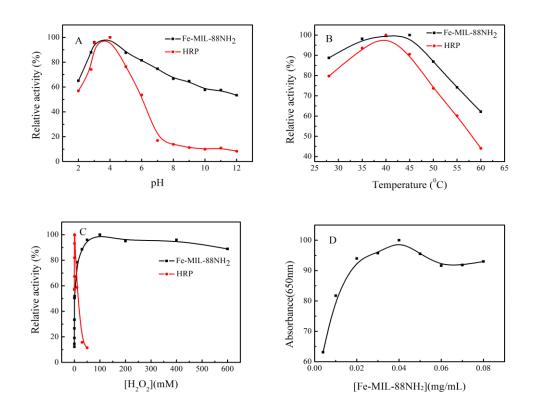
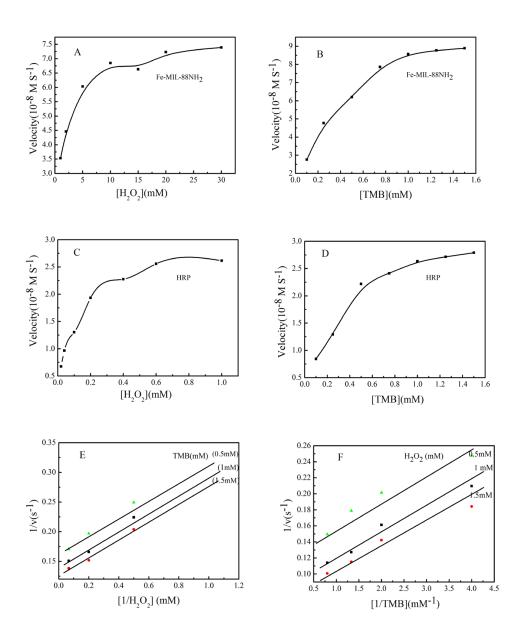
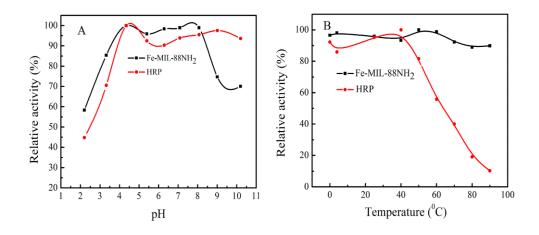


Fig. S6 SEM image of Fe-MIL-88NH $_2$ nanoparticles before (A) and after (B) the catalytic reaction.

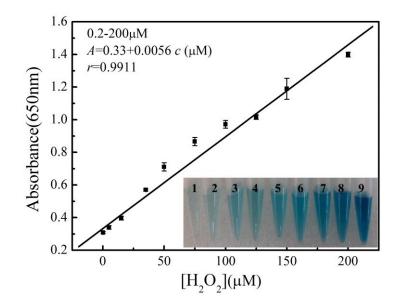

Fig. S7 Dependency of the Fe-MIL-88NH₂ MOF peroxidase-like activity on (A) pH ; (B) temperature; (C) H₂O₂ concentration and (D) Fe-MIL-88NH₂ MOF concentration; (A) Experiments were carried out using 0.04 mg/mL Fe-MIL-88NH₂ or 1.25 μ g/mL HRP in 50 μ L 0.2 M NaAc buffer (pH 2-12) with 1mM TMB and 50 μ M H₂O₂ at 45 ^oC for 20min. (B) 0.04 mg/mL Fe-MIL-88NH₂ or 1.25 μ g/mL HRP in 50 μ L 0.2 M NaAc buffer (pH 4.0) with 1mM TMB and 50 μ M H₂O₂ were incubated in different temperature(28-60 ^oC) for 20min. (C) Various concentrations of H₂O₂ were incubated in 50 μ L 0.2 M NaAc buffer (pH 4.0) at 45 ^oC for 20min with 1mM TMB and 0.04 mg/mL Fe-MIL-88NH₂ or 1.25 μ g/mL HRP. (D) The peroxidase activity was determined using the Fe-MIL-88NH₂ concentration ranging from 0.004 up to 0.08 mg/mL, 50 μ L 0.2 M NaAc buffer (pH 4.0), 1mM TMB and 50 μ M H₂O₂ were added to the reaction The maximum point in each curve was set as 100 %.

Fig. S8 Steady-state kinetic assay of Fe-MIL-88NH₂ MOF. The velocity of the reaction was measured using 0.04 mg/mL Fe-MIL-88NH₂ MOF (A, B) or 1.25 μ g/mL HRP (C, D) in 50 μ L 0.2 M NaAc buffer (pH 4.0) at 45 ⁰C. (E), (F) Double-reciprocal plots of activity of Fe-MIL-88NH₂ MOF at a fixed concentration of one substrate versus varying concentration of the second substrate for H₂O₂ and TMB.

Fig. S9 Comparison of the stability of Fe-MIL-88NH₂ MOF and HRP. (A) Fe-MIL-88NH₂ MOF and HRP were first incubated at pH 2–10 for 1h and then their peroxidase activities were measured under standard conditions. (B) Fe-MIL-88NH₂ MOF and HRP were first incubated at 0–90 0 C for 1 h and then the peroxidase activity was measured under standard conditions. (TMB, 1 mM; Fe-MIL-88NH₂, 0.04 mg/mL; HRP, 1.25 µg/mL; 50 µL 0.2 M pH 4.0 NaAc buffer at 45 0 C; incubation 20 min). The maximum point in each curve was set as 100 %.

Fig. S10 The response curves of H_2O_2 . Error bars represent the standard deviation for three measurements. Inset: Images of colored products for different concentrations of H_2O_2 (1-9). (TMB, 1mM; Fe-MIL-88NH₂, 0.04 mg/mL; NaAc buffer, 50 μ L 0.2M); incubation 20 min in pH 4.0 NaAc buffer at 45 ^oC.

References

1. W. W. He, Y. Liu, J. S. Yuan, J. J. Yin, X. C.Wu, X. N. Hu, K. Zhang, J. B.Liu, C. Y. Chen, Y. L. Ji and Y. T. Guo, *Biomaterials*, 2011, **32**, 1139

2. A. K. Dutta, S. K. Maji, D. N. Srivastava, A. Mondal, P. Biswas, P. Paul and B. Adhikary, ACS Appl. Mater. Interfaces, 2012, 4, 1919

3. S. Surblé, C. Serre, C. Mellot-Draznieks, F. Millange and G. Férey, Chem. Commun., 2006, 284.

4. M. H. Pham, G. T. Vuong, A. T. Vu and T. O. Do, *Langmuir*, 2011, 27, 15261.

5. T. Z. Zhang, Y. Lu, Y. G. Li, Z. M. Zhang, W. L. Chen, H. Fu and E. B. Wang, *Inorg. Chim. Acta*, 2012, **384**, 219.