Supporting Information

Colorimetric Sensing Strategy for Mercury (II) and Melamine Utilizing Cysteamine-modified Gold Nanoparticles

Yujie Ma^a, Ling Jiang^b, Yajun Mei^a, Rongbin Song^a, Danbi Tian^a* and He Huang^b

^aCollege of Science, Nanjing University of Technology, Puzhu Road, Nanjing 211816, People's Republic of China.

^bCollege of Biotechnology and Pharmaceutical Engineering; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing University of Technology, Nanjing 210009, People's Republic of China.

*E-mail: danbi@njut.edu.cn. Phone: (+86)-(025)-83172094.

-Table of Contents-

Figure S1	. UV-vis spectra ratio of E650/E520 for the stoichiometric ratio	o of
AuNPs to	cysteamine	S 3
Figure S2.	The pH effect to the CA-Au NPs	S 3
Figure S3	. UV-vis spectra ratio of E650/E520 in the presence of cytos	ine,
uracil, thy	mine, lactose, urea, Ca2+ and melamine.	S4
Table S1	Results of the Determination of the Hg2+ in Tap Water	S4
Table S2	Results of the Determination of the Melamine in Milk Powder	S 5
Reference		S 5

Figure S1. UV-vis spectra ratio of E650/E520 for the stoichiometric ratio of

Figure S2. The pH effect to the CA-Au NPs

We evaluated the effects of solution pH change (ranging from 2.4 to 8) with 2 mM disodium hydrogen phosphate -citric acid buffer. When the pH \ge 8.0 or pH \le 3.4, the free CA-AuNPs themselves aggregated easily.

Figure S3. UV-vis spectra ratio of E650/E520 in the presence of cytosine, uracil,

thymine, lactose, urea, Ca2+ and melamine. Concentration: 10 µM each.

The selectivity of this method for melamine was evaluated the ratio of E650/E520 in the presence of cytosine, uracil, thymine, lactose, urea, Ca^{2+} and melamine. The concentration of each interferent was 1.0 μ M. The results showed excellent selectivity for melamine which was comparable to other detection methods¹⁻³ for melamine based on AuNPs.

Tap water	Added (µM)	Found (µM)	Recovery (%)	RSD% (n=3)
T1	0.05	0.045	90.0	1.4
T2	0.10	0.953	95.3	1.5
Т3	1.50	1.456	97.0	2.1
T4	2.50	2.417	96.7	1.7

 Table S1
 Results of the Determination of the Hg2+ in Tap Water

Milk powder	Added(µM)	Found (µM)	Recovery (%)	RSD% (n=3)
M1	0.08	0.772	96.5	2.1
M2	0.16	0.157	98.1	2.6
M3	0.64	0.658	102.8	1.7
M4	1.60	1.776	111.0	2.5

Table S2 Results of the Determination of the Melamine in Milk Powder

Reference

- 1. L. Guo, J. Zhong, J. Wu, F. Fu, G. Chen, Y. Chen, X. Zheng and S. Lin, *Analyst*, 2011, **136**, 1659-1663.
- 2. H. Chi, B. Liu, G. Guan, Z. Zhang and M.-Y. Han, Analyst, 2010, 135, 1070-1075.
- 3. X. Liang, H. Wei, Z. Cui, J. Deng, Z. Zhang, X. You and X.-E. Zhang, *Analyst*, 2011, **136**, 179-183.