Electronic Supplementary Information

Colorimetric sensor strips for formaldehyde assay utilizing fluoral-p decorated polyacrylonitrile nanofibrous membranes

Xueqin Wang,^{a, b} Yang Si,^a Xue Mao,^a Yan Li,^c Jianyong Yu,^c Huaping Wang^a and

Bin Ding*^{*a*, *b*, *c*}

^a State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College

of Materials Science and Engineering, Donghua University, Shanghai 201620, China

^b State Environmental Protection Engineering Center for Pollution Treatment and Control in

Textile Industry, Donghua University, Shanghai 201620, China

^c Nanomaterials Research Center, Modern Textile Institute, Donghua University, Shanghai

200051, China

Fig. S1

The fractal dimension (D) was calculated by tow steps, first, calculating the V_{mono} based on the BET theory (equation 1),

$$\frac{1}{V[(P_0/P)-1]} = \frac{c-1}{cV_{mono}} \left(\frac{P}{P_0}\right) + \frac{1}{cV_{mono}}$$
(1)

Where, *V* is the amount of N₂ adsorbed at each equilibrium pressure, P₀ is the saturation pressure V_{mono} is the amount adsorbed of monolayer coverage, and *c* is the constant. When temperature is constant, the plot of the $1/V[(P/P_0)-1]$ against P/P_0 reconstructed from the N₂ absorption isotherm should be a straight line, but in fact, only when P/P_0 is in the range of 0.05 to 0.35, the figure displayed a good linearity. Thus we could calculate the slope (k) and intercept (b) from the figure, and then calculate the V_{mono} based on the following equations (2 and 3).

$$V_{mono} = \frac{1}{k+1} \tag{2}$$

$$c = 1 + \frac{k}{b} \tag{3}$$

Then, the calculation of D was according to the modified FHH theory of multilayer gas adsorption:

$$\ln(V/V_{mono}) = S[\ln(\ln(p_0/p))] + \text{constant}$$
(4)

A plot of $\ln(V/V_{mono})$ versus $\ln(\ln(P_0/P))$ shows a linear trend, and the slope *S* could be used to calculate D utilizing the expression: S = D-3, which was according to the dominant forces of liquid-gas surface tension at high coverage.

Fig. S2 The mechanism of Mannich reaction.

Fig. S3 The resonance states of intermediates 2

	Control					60 ppb				▲ T :*
	R ₄₁₇	L*	a*	b*	R ₄₁₇	L*	a*	b*	Δ K 417	
Strips	0.841	96.2	-8.1	-2.3	0.694	92.4	-8.4	-0.1	0.147	4.31
Paper	0.836	95.6	-8.0	-1.6	0.756	93.7	-8.6	-0.4	0.080	2.32

Table S1 The sensitivity comparison of colorimetric strips and filter paper