Supporting Information

Improvement of LATE-PCR to allow single-cell analysis by pyrosequencing

Qinxin Song,^{a,‡} Huiyong Yang,^{b,‡} Bingjie Zou,^c Tomoharu Kajiyama,^d Hideki Kambara^d, and Guohua Zhou^{* b,c}

^a School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China

^b Huadong Research Institute for Medicine and Biotechnics, Nanjing 210002, PR China.

^c Department of pharmacology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, PR China.

^d Central Research Laboratory, Hitachi, Ltd., Tokyo 185-8601, Japan.

* Corresponding author, Prof. Guohua Zhou: ghzhou@nju.edu.cn

Contents

Table S-1. Primers for the comparison of imLATE-PCR and LATE-PCR.

Fig. S-1. Pyrograms of different amounts templates $(10^5, 10^3, 10^1 \text{ copies}, \text{ and blank})$ by 1 µL of imLATE-PCR products on slide. The expected sequence was indicated above peak.

Fig. S-2. Tests for evaluating cross-contamination between wells on the slide. The positioning pattern of samples is single cancer cells (Hep G) at lanes A and C for positive control, water at lane B for blank control, and single mouse oocytes at lane D for negative control. (A) Pyrosequencing of the products from imLATE-PCR of the 1555A>G on mtDNA. About 95.8% (23/24) wells were positively detected. (B) Pyrosequencing of the products from imLATE-PCR of the the BRCA1 gene on gDNA. About 54.2% (13/24) wells were positively detected. (C) Pyrosequencing of the products from imLATE-PCR of the BRCA1 gene on gDNA by coupling a nest PCR before imLATE-PCR. About 91.7% (22/24) wells were positively detected. No cross-talk was found for all tests.

Name	Sequence (5'-3')*	Tm	Concentration	Amplicon	Amplicon Tm
		(°C)	(µM)	length (bp)	(°C)
imLATE-PCR Primer					
BRCA1-1 (PX)	G <u>CG</u> GT <u>C</u> A <u>C</u> CCACAGTCGGGAAACAAGCAT	68.8	1		
BRCA1-2 (PL1)	CGAGCAGATGACTGTCGCTTTGAAAC	59.1	0.1	107	71.8
BRCA1-3 (PL2)	TAAGGACC <u>G</u> AGAGTGGGCAGAGAAT	60.0	0.1	171	74.3
BRCA1-4 (PL3)	CGTTCTGACCAACCACAGGAAAGCC	61.0	0.1	301	74.5
BRCA1-5 (PL4)	CGTCGGAGTAAAGAGTCCAGTTTCGTTG	59.6	0.1	402	74.8
BRCA1-6 (PL5)	GCGAATGACTCGATTGGAAAAAGTGGTG	59.2	0.1	464	74.7
LATE-PCR Primer					
BRCA1-1 (PL)	G <u>CG</u> GT <u>C</u> ACCCACAGTCGGGAAACAAGCAT	66.5	0.1		
BRCA1-2 (PX1)	CGAGCAGATGACTGTCGCTTTGAAAC	61.5	1	107	71.8
BRCA1-3 (PX2)	TAAGGACC <u>G</u> AGAGTGGGCAGAGAAT	62.7	1	171	74.3
BRCA1-4 (PX3)	CGTTCTGACCAACCACAGGAAAGCC	63.6	1	301	74.5
BRCA1-5 (PX4)	CGTCGGAGTAAAGAGTCCAGTTTCGTTG	61.9	1	402	74.8
BRCA1-6 (PX5)	GCGAATGACTCGATTGGAAAAAGTGGTG	61.5	1	464	74.7

Table S-1. Primers for the comparison of imLATE-PCR and LATE-PCR

*Bases underlined mean the artificially mismatched bases. Primer and amplicon Tm values were estimated by the nearest neighbor formula and a salt adjustment using input concentrations of 1 μ M for the excess primer and amplicon, 0.1 μ M for the limiting primer, and 50 mM for monovalent cations (OligoAnalyzer 3.0, a Web-based program to compute these values, is available at <u>http://scitools.idtdna.com/analyzer/</u>).

Fig. S-1. Pyrograms of different amounts templates $(10^5, 10^3, 10^1 \text{ copies}, \text{ and blank})$ by 1 µL of imLATE-PCR products on slide. The expected sequence was indicated above peak.

Fig. S-2. Tests for evaluating cross-contamination between wells on the slide. The positioning pattern of samples is single cancer cells (Hep G) at lanes A and C for positive control, water at lane B for blank control, and single mouse oocytes at lane D for negative control. (A) Pyrosequencing of the products from imLATE-PCR of the 1555A>G on mtDNA. About 95.8% (23/24) wells were positively detected. (B) Pyrosequencing of the products from imLATE-PCR of the BRCA1 gene on gDNA. About 54.2% (13/24) wells were positively detected. (C) Pyrosequencing of the products from imLATE-PCR of the the BRCA1 gene on gDNA. About 54.2% (12/24) wells were positively detected. (C) Pyrosequencing of the products from imLATE-PCR of the the BRCA1 gene on gDNA by coupling a nest PCR before imLATE-PCR. About 91.7% (22/24) wells were positively detected. No cross-talk was found for all tests.