Supporting Information

Ceria-based Nanocomposites in Enrichment and Identification of Phosphopeptides

Batool Fatima¹, Muhammad Najam-ul-Haq^{1*}, Fahmida Jabeen¹, Saadat Majeed^{1,3}, Muhammad N. Ashiq¹, S. Ghulam Musharraf², Muhammad A. Shad¹, Guobao Xu³

Figure 1S: FT-IR characterisation of ceria-nanocomposites (a) Ceria-iron nanocomposite. (b) Ceria-tin oxide nanocomposite.

Figure 2S: MALDI-MS spectra of tryptic β -casein (1µg/mL) for phosphopeptide enrichment after elution for ceria-iron oxide nanocomposite in different ratios (a) Ce:Fe (1:2); (b) Ce:Fe (1:1); (c) Ce:Fe (2:1). The phosphopeptides, dephosphorylated and acidic residue derived from β -casein are marked with β , β -HPO₃ and G- β * respectively.

Figure 3S: MALDI-MS spectra of tryptic β -casein (1 µg/mL) for phosphopeptide enrichment after elution for (a) ceria-iron oxide nanocomposite, Ce:Fe (1:1). (b) Fe₃O₄ nanoparticles; The phosphopeptides, dephosphorylated and acidic residue derived from β -casein are marked with β , β -HPO₃ and G- β * respectively.

Figure S4A: MALDI-MS spectra of tryptic digest of non-fat milk for (a) after enrichment with ceria-iron oxide nanocomposite (b) after enrichment with ceria-tin oxide nanocomposite in two mass ranges for 1000-1500 Da and 1500 to 2000 Da. All identified peptide residues derived from non-fat milk are labelled as α and β for phosphopeptides derived from α - and β -casein and dephosphorylated fragments with -nHPO₃.

Figure S4B: MALDI-MS spectra of tryptic digest of non-fat milk in mass range for (a) after enrichment with ceria-iron oxide nanocomposite (b) after enrichment with ceria-tin oxide nanocomposite for 2000-3000 Da, 3000-4000 Da and excessive zoomed mass range for 2800-2900 Da. All identified peptide residues derived from non-fat milk are labelled as α and β for phosphopeptides derived from α - and β -casein and dephosphorylated fragments with nHPO₃.

Table S1: Comparison of individual metal oxides and their synthesized nanocomposites in context to the literature.

Materials	Samples Standards	Sample loading/ Concentration	Sensitivity	Remarks	Ref. no.	
CeO ₂ NPs (26 nm)	β-casein	1 µmol	1.25 fmol	Dephosphorylation is highlighted. Serum analysis also present	27	
Fe ₃ O ₄	β-casein	1 pmol	100fmol	Comparative study for Fe(II) and Fe(III),	28	
SnO ₂	Standard peptides	1 µg	no results	Recovery studies, optimization and comparison to commercial materials	29	
CeO ₂ -Fe ₂ O ₃	β-casein	1 pmol	10-100 fmol	Presence of acidic residues, dephosphorylation, Fibrinogen detected from serum as in CeO ₂	Present study	
CeO ₂ -SnO ₂	β-casein	1 pmol	10-100 fmol	No acidic residues. Reduce enrichment of high mass peptides with increase complexity.	Present study	

Peak	[M+H]	Amino Acid Sequence	Sequence	Dephosphorylated	CeO ₂ /	CeO ₂ /				
No.	+		No.	fragment[-nHPO ₃]	Fe ₂ O ₃	SnO ₂				
α-casein										
α-1	1197.6	KNMAINP S *KENL ($\alpha_s 2$)	39-50 (1P)	1117.7	•	•				
α-2	1253.5	TVDMMES*TEVF ($\alpha_s 2$)	153-162(1P)	1173.9	•	•				
α-3	1330.5	EQLS*TS*EENSK ($\alpha_s 2$)	141-151(2P)	1249.9, 1170.3	•	•				
α-4	1594.4	TVDMES*TEVFTKK ($\alpha_s 2$)	153-165(1P)	1514.9	•	•				
α-5	1759.4	HQGLPQEVLNENLLR ($\alpha_s 2$)	23-37(N _p)	-	•	0				
α-6	1846.9	KDIGES*ES*TEDQAMEDIK (α_{s} 1)	58-73 (1P)	1766.8	•	•				
α-7	1951.4	KYKVPQLEIVPNS*AEERL ($\alpha_{s}1$)	119-134(1P)	1871.9	•	•				
α-8	2247.5	KEKVNELS*KDIGES*ES*TEDQA ($\alpha_{s}1$)	35-52(3P)	2167.8, 2087.7	•	•				
α-9	2362.2	PNS*VEQKHIQKEDVPSERY ($\alpha_{s}1$)	88-106(1P)	2282.9	•	•				
α-10	2616.4	NTMEHV <i>S*S*S*EES</i> *IISQETYK (α _S 2)	17-36(4P)	2536.9,2456,7,	•	•				
				2376.3,2296.3						
α-11	3132.6	KNTMEHVS*S*S*EESIIS*QETYKQEK	16-40(4P)	3052.1, 2975.3,	•	•				
		N $(\alpha_s 2)$		2892.3, 2812.1						
ß-casein										
β-1	975.5	KFQS*EEQQQ	46-54 (1P)	895.4	0	•				
β-2	1994.4	LLYQEPVLGPVRGPFPIIV	206-224 (N _p)	-	•	0				
β-3	2061.7	FQS*EEQQQTEDELQDK	47-62 (1P)	1981.7	0	•				
β-4	2186.7	DMPIQAFLLQEPVLGPVR	199-217(N _p)	-	•	0				
β-5	2556.9	FQS*EEQQQTEDELQDKIHPF	47-67(1P)	2476.9	•	•				
β-6	2779.1	IEKFQS*EEQQQTEDELQDKIHPF	44-67(1P)	2699.8	0	•				
β-7	2965.1	RELEELNVPGEIVES*LS*S*S*EESITR	15-39 (4P)	2885.2, 2805.3,	•	•				
				2725.9, 2646.9						
β-8	3477.8	RELEELNVPGEIVES*LS*S*S*EESITRI	15-43 (4P)	3397.2, 3317.3,	•	•				
		NK		3237.8,3157.9						
β-9	3975.8	RELEELNVPGEIVES*LS*S*S*EESITRI	15-47(4P)	3895.2,3815.2,	0	•				

Table S2: Overview of the identified peptides with dephosphorylated fragments for both ceria-nanocomposites by employing non-fat milk digest.

*S** represents the phosphorylation site (phosphoserine)

• indicate the detected peptide in the mass spectra

 \circ indicate the absence of peptide in the mass spectra

*** Mass peak for dephosphorylated fragment not identified by both nanocomposites