Supplementary Information

GENOMAGNETIC ASSAY FOR ELECTROCHEMICAL DETECTION OF OSTEOGENIC DIFFERENTION IN MESENCHYMAL STEM CELLS

Arzum Erdem^{a,*}, Gokhan Duruksu^b, Gulsah Congur^a and Erdal Karaoz^{b,*}

† Electronic Supplementary Information (ESI) available: Characterization by flow cytometry, the histograms and tables representing the results for electrochemical detection of sequence-selective DNA hybridization related to OSC, OSN and OSP.

Fig. S1. Culture of hBM-MSCs and characterization by flow cytometry. Colony formation of stem cells after isolation (A; P0, 8 days). Morphology of hBM-MSCs in culture represented large, flattened structures (B; P1, 17 days. C; P3, 3 days). Representative flow cytometry analysis of cell-surface markers of MSCs (D; P3).

Table S1. The changes at the oxidation signals of guanine and adenine after hybridizationbetween each DNA probe and its complementary target; OSC, OSN and OSP.

	Guanine	Adenine
OSC	% 140 increase	% 100 increase
OSN	% 30 decrease	% 283 increase
OSP	% 25 decrease	% 100 increase

Fig. S2. Histograms representing the guanine (**a**) and adenine (**b**) signals by using OSC DNA probe immobilized magnetic particles before hybridization (**A**) and after hybridization in the presence of OSC complementary target (**B**), OSN target (**C**) and OSP target (**D**).

Table S2. Changes in the oxidation signals of guanine and adenine signals afterhybridization between OSC DNA probe and its complementary target (A), OSN target (B)and OSP target (C).

	Guanine	Adenine
Α	%102 increased	%100 increased
В	%28 increased	%100 increased
С	%51 increased	%100 increased

Fig. S3. Histograms representing the guanine (**a**) and adenine (**b**) signals by using OSN DNA probe immobilized magnetic particles before hybridization (**A**) and after hybridization in the presence of OSN complementary target (**B**), OSC target (**C**) and OSP target (**D**).

Table S3. Changes in the oxidation signals of guanine and adenine signals after hybridization between OSN DNA probe and its complementary target (**A**), OSC target (**B**) and OSP target (**C**).

	Guanine	Adenine
Α	%30 decreased	% 283 increased
В	%2.8 decreased	% 37 increased
С	% 6.3 decreased	%100 decreased

Fig. S4. Histograms representing the guanine (**a**) and adenine (**b**) signals by using OSP DNA probe immobilized magnetic particles before hybridization (**A**) and after hybridization in the presence of OSP complementary target (**B**), OSC target (**C**) and OSN target (**D**).

Table S4. Changes in the oxidation signals of guanine and adenine signals after hybridization between OSP DNA probe and its complementary target (**A**), OSC target (**B**) and OSN target (**C**).

	Guanine	Adenine
Α	%25 decreased	% 100 increased
В	%55 decreased	% 100 decreased
С	% 90 decreased	%100 decreased

6