Electronic supplementary information

Green Synthesis of Carbon Dots with Down- and Up-conversion Fluorescent Properties for Sensitive Detection of Hypochlorite with Dual-Readout Assay

Bangda Yin, Jianhui Deng, Xue Peng, Qian Long, Jiangna Zhao, Qiujun Lu, Qiong Chen, Haitao Li, Hao Tang, Youyu Zhang*, Shouzhuo Yao Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China

Quantum yield measurements:

The QYs of down-conversion were measured according to the reference. Quinine sulfate in a 0.1 mol·L⁻¹ H₂SO₄ aqueous solution (quantum yield is 0.54)of was selected as references for the C-dots aqueous solutions. The QYs were determined by comparing the integrated fluorescence intensity and the absorbance value of the C-dots samples with that of the references. Both C-dots and quinine sulfate excited at 320 nm and the absorbance (less than 0.05 at the excitation wavelength) at 280nm and 310nm for C-dots and quinine sulfate, respectively. The slope method was used to calculate the QYs of C-dots using the equation:

 $QY_{u} = QY_{s} (m_{u}/m_{s}) (n_{u}/n_{s})$

Where QY is the quantum yield, m is the slope determined by the curves and n is the refractive index (1.33 for water and a 0.1 mol·L⁻¹ H₂SO₄ aqueous solution). The subscript "s" refers to the standards and "u" refers to the unknown samples. For these aqueous solutions, $n_u/n_s=1$, A series of concentrations for the references and the C-dots samples were measured to obtain the slopes. The QY of carbon dots in a different condition are list in table S 1. The carbon dots obtained at 180 °C for 5 for used as an example, as shown in Figure S2, the m values were calculated to be 16863 and 47188 for C-dots and quinine sulfate, respectively. The QY of the C-dots was 19.3%.

Factor	<i>T</i> (°C)	<i>t</i> (h)	$r_{pepper/water}$	QY (%)
1	160	5	1	10.2
2	180	3	1	15.4
3	180	5	1	18.1
4	180	8	1	18.5
5	180	5	4	17.3
6	180	5	0.25	19.3
7	200	5	1	17.9

Table S 1. Comparison of C-dots prepared at different reaction condition

Table S 2. Comparison of different methods for HClO/ClO⁻ detection

Detection Limit	Dynamic Range	Detection Method	Ref.
1 μM	$0.01-10 \text{ mmol} \cdot \text{L}^{-1}$	UV	s1
0.81 µM	0-70 μ mol·L ⁻¹	Colorimetric	s2
$0.4 \text{ mg} \cdot \text{L}^{-1}$	$2-54.1 \text{ mg} \cdot \text{L}^{-1}$	Chemiluminescence	s3
$10 \text{ mg} \cdot \text{ml}^{-1}$	$47-200 \text{ mg} \cdot \text{ml}^{-1}$	HPLC	s4
-	0.05–200 ppm	Electrochemistry	s5
0.05 μΜ	$0.05 - 10 \ \mu mol \cdot L^{-1}$	Fluorescence	s6
$0.05 \ \mu M^a$	$0.1 - 300 \ \mu mol \cdot L^{-1a}$	Fluorescence	This work
0.06 µM ^b	$0.1 - 300 \ \mu mol \cdot L^{-1b}$		

^a Downconversion fluorescent property

^bUpconversion fluorescent property

Fig. S 1 Zeta potential of C-dots in the (A) absence and presence of (B) 0.4 mmol·L⁻¹ hypochlorite

Fig. S 2 Fluorescence and absorbance of the C-dots (A) and quinine sulfate (B).

Fig. S 3 (A) The changes of FL intensity of C-dots solution within 30 days. (B) The effect of pH value and (C) the NaCl concentration (0, 10, 50, 100, 200, 300 mmol·L⁻¹) on C-dots fluorescence.
(D) Time-course plot of FL intensity from C-dots excited at 360 nm.

Fig. S 4 Fluorescence emission spectrum of 0.18 mg·mL⁻¹ C-dots solution in the absence (black), presence of (red) 0.3 mmol·L⁻¹ hypochlorite and (green) adding NaBH₄ to the oxidation C-dots excited at 360 nm.

Fig. S 5 FT-IR spectra of (a) the C-dots, (b) the C-dots in the presence of NaClO and (c) NaClO

Reference

- 1 T. Aoki and M. Munemori, Anal. Chem., 1983, 55, 209-212.
- 2 X. Lou, Y. Zhang, Q. Li, J. Qin and Z. Li, Chem. Commun., 2011, 47, 3189-3191.
- 3 J. Ballesta Claver, M. C. Valencia Mirón and L. F. Capitán-Vallvey, *Anal. Chim. Acta*, 2004, **522**, 267-273.
- 4 T. Watanabe, T. Idehara, Y. Yoshimura and H. Nakazawa, J. Chromatogr., A, 1998, 796, 397-400.
- 5 S.-y. Kishioka, T. Kosugi and A. Yamada, *Electroanalysis*, 2005, 17, 724-726.
- 6 Y. Dong, G. Li, N. Zhou, R. Wang, Y. Chi and G. Chen, Anal. Chem., 2012, 84, 8378-8382.