Supplementary Information

Identification of Mycobacteria Based on Spectroscopic Analyses of Mycolic Acid Profiles

Omar E. Rivera-Betancourt¹, Russell Karls², Benjamin Grosse-Siestrup², Shelly Helms², Frederick Quinn², and Richard Dluhy^{1*}

¹Department of Chemistry, University of Georgia, Athens, GA 30602

²Department of Infectious Diseases, University of Georgia, Athens, GA 30602

*Author to whom correspondence should be addressed

Tel: +1 706 542 1950 Fax: +1 706 542 9454 dluhy@uga.edu

Figure S.1. Representative total ion chromatograms of three *Mycobacterium* species investigated by GC-MS. (A) *M. smegmatis*; (B) *M. avium*; (C) *M. tuberculosis* strain H37Rv; (D) *M. tuberculosis* strain Erdman

Figure S.2. Mycolic acid sub-structures commonly found in mycobacteria.

Figure S.3. Ten individual, unprocessed SERS spectra obtained for the *M. tuberculosis* Erdman strain. Spectra illustrate the reproducibility of the raw data used in this analysis.

Figure S.4. PCA scores plot corresponding to the NTM species *M. smegmatis* (**0**), *M. avium* (**⑤**), *M. bovis* BCG (⊠). The PC model was constructed from the SERS spectra of the corresponding species using the spectral range 1700-700 cm⁻¹.

Figure S.5. A hierarchical cluster analysis dendrogram derived from the PC scores of the NTM species. The nodes group into three recognized clusters and are labeled according to the samples. (A) *M. avium* (blue) ; (B) *M. bovis* BCG (green) ; (C) *M. smegmatis* (red).

Figure S.6. PCA scores plot corresponding to *M. tuberculosis* Erdman strains. Wild type (⑤), E∆sigC mutant (**○**), and E∆Ccomp complement (⊠) strains. The PC model was constructed from the SERS spectra of the corresponding species using the spectral range 1700 - 700 cm⁻¹.

Figure S.7. A hierarchical cluster analysis dendrogram derived from the PC scores of the *M*. *tuberculosis* Erdman strains. The nodes group into two distinct clusters and are labeled according to the samples. (A + B) wild-type (blue) and *sigC* complement (green); (C) *sig C* mutant (red).

Figure S.8. PCA scores plot corresponding to *M. tuberculosis* H37Rv strains. Wild Type (⑤),
Rv∆sigC mutant (**0**), and Rv∆Ccomp complement (⊠) strains. The PC model was constructed from the SERS spectra of the corresponding species using the spectral range 1700 - 700 cm⁻¹.

Figure S.9. A hierarchical cluster analysis dendrogram derived from the PC scores of the *M*. *tuberculosis* H37Rv strains. The nodes group into two distinct clusters and are labeled according to the samples. (A + B) parent (blue) and *sigC* complement (green); (C) *sigC* mutant (red).

Table S.1.Observed NMR chemical shift resonances appearing in the ¹H-NMR spectra of
the non-tuberculous mycobacteria *M. smegmatis*, *M. avium* and *M. bovis* BCG.

Species	M. smegmatis	M. bovis BCG	M. avium
Mycolic Acid Type Sub-Class	keto-mycolate k4	keto- & alpha k3, α1	keto-mycolate k3, k4
Functional Group	Observed Resonances (ppm)		
(CH ₂) _n CH ₃	0.85	0.85	0.85
$CH_2(CH_2)_nCH_2$	1.0 - 1.5	1.0 - 1.5	1.0 - 1.5
$R_1 = CH - R_2$	2.45	2.45	2.45
CHOR		2.96	2.96
CHOCH ₃		3.32	3.32
CO ₂ CH ₃	3.7	3.7	3.7
trans CH=CH		5.39, 5.35	5.39, 5.35
<i>cis</i> CH=CH	5.3		
cis-cyclopropane	0.73	0.66 , -0.31	0.66

trans-cyclopropane

Table S.2.Observed NMR chemical shift resonances appearing in the ¹H-NMR spectra of
the *M. tuberculous* clinical Erdman strain.

Species	Wild Type	$E\Delta sigC$	E∆Ccomp
Mycolic Acid Type Sub-Class	keto-mycolate	keto-mycolate	keto-mycolate
Functional Group	(Observed Resonances (ppn	1)
(CH ₂) _n CH ₃	0.85	0.85	0.85
$CH_2(CH_2)_nCH_2$	1.0 – 1.5	1.0 – 1.5	1.0 – 1.5
$R_1 = CH - R_2$	2.45	2.45	2.45
CHOR		2.96	2.96
CHOCH ₃		3.32	3.32
CO_2CH_3	3.7	3.7	3.7
trans CH=CH		5.39, 5.35	
cis CH=CH	5.3		5.3
cis-cyclopropane	0.70 , -0.31	0.70 , -0.31	0.70 , -0.31
trans-cyclopropane	0.60,0.10	0.60, 0.10	0.60,0.10

Table S.3.Observed NMR chemical shift resonances appearing in the ¹H-NMR spectra of
the *M. tuberculous* laboratory-passaged H37Rv strains.

Species	Wild Type	Rv∆sigC	Rv∆Ccomp
Mycolic Acid Type Sub-Class	keto-mycolate	keto-mycolate	keto-mycolate
Functional Group	(bserved Resonances (ppn	n)
(CH ₂) _n CH ₃	0.85	0.85	0.85
$CH_2(CH_2)_nCH_2$	1.0 - 1.5	1.0 – 1.5	1.0 – 1.5
$R_1 = CH - R_2$	2.45	2.45	2.45
CHOR		2.96	2.96
CHOCH ₃		3.32	3.32
CO ₂ CH ₃	3.7	3.7	3.7
trans CH=CH		5.39, 5.35	
cis CH=CH	5.3		5.3
cis-cyclopropane	0.70 , -0.36	0.70 , -0.36	0.70 , -0.36
trans-cyclopropane	0.6	0.6	0.6

	Raman Shift, cm	-1		
M.smegmatis	M.avium	M. bovis BCG	Vibrational Mode Assignment	
1654	1612	1659	(C=C); C=O- β conjugated; v_s (C=O) carboxylic acid	
1598	1594	1593		
		1500	v(C=C)	
1442	1442	1441	$\delta(C-H_2)$ sci.; CH ₃ antisym. bend	
	1393		C-O-H bend 1° alcohol	
	1350	1366	C-O-H bend; $(CH_2)_n$ in-phase twist	
1299	1289	1298	C-O-H bend	
		1265	cis dialkyl C-H sym. rock	
1240	1242		CH-O epoxy ring breathing mode	
1210		1210	C-O-H bend	
1164	1170	1164	v _{as} (COC); δ(CH)	
1129	1135	1135	C-C skel. str in alkane	
	1101	1097	v _{as} (COC); C-C skeletal	
1058		1065	v(CHR ₂) C-C skel. str ; C-C skel. str in alkane; v _{as} (COC)	
1028		1030	oop C-C-O stretch	
1001	1003	1004	v(C-C-O) out-of-phase stretch of primary alcohol	
	970	962	O-H-O wagging; trans dialkyl wag	
	931		v(CHR ₂) C-C skel. str where $R \neq CH_3$; COO str carboxylic acid	
893			v(C-C-O) in-phase stretch of primary alcohol, v_{s} (C-O-C); C-C skel, str in alkane; COO str earboundie said	
841	855		v(C-C-O) in-phase stretch of primary alcohol; C-C skel. str in alkane: COO str carboxylic acid	
		832	v(C-C-O) in-phase stretch of primary alcohol; v(CHR ₂) C-C	
773		778	SKEI. SIT WHERE $K \neq CH_3$ CH in-phase rock; v(CHR) -C-C skel. str where $R \neq CH$	
(00	(70)	()($1 - \frac{1}{2}$ = proversion, $(1 - \frac{1}{2})^2 = 0$ shows a where $(1, 0)^2$	
098	0/2	090	cis utaikyi U-H wag	

Table S.4.Representative Raman bands appearing in the SERS spectra of the non-
tuberculous mycobacteria *M. smegmatis*, *M. avium* and *M. bovis* BCG.

I	Raman Shift, cm ⁻¹			
Wild Type	E∆sigC	EΔCcomp	Vibrational Mode Assignment	
1592	1586	1592	C=O, alkyl ketone; (C=C); C=O- β conjugated; v_s (C=O) carboxylic	
			acid	
1564	1564	1564	C=C	
	1458	1492	CH ₃ antisym. bend.	
1458		1457	$\delta(C-H_2)$ sci.	
1391	1387	1392	C-O-H bend	
1319	1315	1314	C-O-H bend; $(CH_2)_n$ in-phase twist	
1275	1280	1280	C-O-H bend	
1241	1244	1241	C-O-H bend	
1158	1157	1163		
1130		1130	C-C skel. str in alkane	
1075	1076	1080	v _{as} (COC)	
1008	1005	1008	v(C-C-O) out-of-phase stretch of primary alcohol	
963			OHO wagging; trans dialkyl wag	
	928		$v(CHR_2)$ C-C skel. str where $R \neq CH_3$;	
	892		v(C-C-O) in-phase stretch of primary alcohol, v _s (C-O-C); C-C skel. str in alkane	
857	856	852	v(C-C-O) in-phase stretch of primary alcohol; C-C skel. str in	
504			alkane v(C-C-O) in-phase stretch of primary alcohol: v(CHR) C-C skel	
/86			str where $R \neq CH_3$	
	714	713	CH_2 in-phase rock; v(CHR_2) C-C skel. str where R \neq CH ₃	
707			cis dialkyl C-H wag	

Table S.5.Representative Raman bands appearing in the SERS spectra of the M.tuberculosis clinical Erdman strains.

R	aman Shift, cm ⁻¹			
Wild Type	Wild Type Rv∆sigC Rv∆Ccomp		Vibrational Mode Assignment	
1592	1586	1592	C=O, alkyl ketone; (C=C); C=O- β conjugated; v _s (C=O) carboxylic acid	
1564	1564	1564	C=C	
	1491	1497	CH ₃ antisym. bend	
1457	1460	1458	$\delta(C-H_2)$ sci.	
1392	1387	1391	C-O-H bend	
1314	1315	1319	C-O-H bend; $-(CH_2)_n$ - in-phase twist	
1280	1280	1275	C-O-H bend	
1241	1244	1241	C-O-H bend	
1163	1157	1158		
1130	1130	1130	C-C skel. str in Alkane	
1080	1076	1075	v _{as} (COC)	
1008	1005	1008	v(C-C-O) out-of-phase stretch of primary alcohol	
924			$v(CHR_2)$ C-C skel. str where $R \neq CH_3$	
		869	v(C-C-O) in-phase stretch of primary alcohol, v _S (C-O-C); C-C skel. str in alkane	
852	856	857	v(C-C-O) in-phase stretch of primary alcohol; C-C skel. str in alkane	
	816	786	v(C-C-O) in-phase stretch of primary alcohol; v(CHR ₂) C-C skel. str where $R \neq CH_3$	
713	714		CH_2 in-phase rock; v(CHR ₂) C-C skel. str where R \neq CH ₃	
707	713	707	cis dialkyl -CH wag	

Table S.6.Representative Raman bands appearing in the SERS spectra of the M.tuberculosislaboratory-passaged H37Rv strains.

Table S.7.Quantitative statistics calculated from the PLS-DA model developed from the SERS
spectra^a of the three NTM species *M. avium*, *M. bovis* BCG, and *M. smegmatis*.

Modeled Class ^b	M. avium	M. bovis BCG	M. smegmatis
Sensitivity (CV) ^c	1.000	1.000	1.000
Specificity (CV)	1.000	1.000	1.000
Class. Error (CV) ^d	0.000	0.000	0.000
RMSECV ^e	0.104	0.141	0.140

^aThirty-six spectra used, 12 for each NTM species. Before calculation, spectra were pre-processed using Savitzky-Golay 1st derivatives, vector normalized, and mean-centered.

^bFive latent variables, accounting for 94.86% of the captured variance, was used in this regression model.

^cCV, cross-validation based on Venetian blinds method with 6 splits

^dClass. Error, classification error after cross-validation

^eRMSECV, root-mean square error after cross-validation

Table S.8.	Quantitative statistics calculated from the PLS-DA model developed from the SERS
	spectra ^a of the three <i>M. tuberculosis</i> Erdman strains.

Modeled Class ^b	Wild Type	EΔCsigC	EΔCcomp
Sensitivity (CV) ^c	1.000	1.000	1.000
Specificity (CV)	1.000	1.000	1.000
Class. Error (CV) ^d	0.000	0.000	0.000
RMSECV ^e	0.203	0.188	0.142

^aThirty-six total spectra used, 12 for each MTB Erdman strain. Before calculation, spectra were preprocessed using Savitzky-Golay 1st derivatives, vector normalization, and mean-centering.

^bTwo latent variables, accounting for 87.88% of the captured variance, was used in this regression model.

^cCV, cross-validation based on Venetian blinds method with 6 splits

^dClass. Error, classification error after cross-validation

^eRMSECV, root-mean square error after cross-validation

Table S.9.	Quantitative statistics calculated from the PLS-DA model developed from the SERS
	spectra ^a of the three <i>M. tuberculosis</i> H37Rv strains.

Modeled Class ^b	Wild Type	Rv∆CsigC	Rv∆Ccomp
Sensitivity (CV) ^c	1.000	1.000	0.833
Specificity (CV)	1.000	0.917	0.792
Class. Error (CV) ^d	0.000	0.042	0.188
RMSECV ^e	0.154	0.351	0.352

^aThirty-six total spectra used, 12 for each MTB H37Rv strain. Before calculation, spectra were preprocessed using Savitzky-Golay 1st derivatives, vector normalized, and mean-centered.

^bThree latent variables, accounting for 72.59% of the captured variance, was used in this regression model.

^eCV, cross-validation based on Venetian blinds method with 6 splits

^dClass. Error, classification error after cross-validation

^eRMSECV, root-mean square error after cross-validation