Multi-functional fluorescent probe for Hg^{2+} , Cu^{2+} and ClO^{-} based on a

pyrimidin-4-yl phenothiazine derivative

Jiena Weng,^{*a*} Qunbo Mei,^{*a*} Bin Zhang,^{*a*} Yuanzhi Jiang,^{*a*} Bihai Tong,^{*c*} Quli Fan,^{*a*} Qidan Ling^{*a*} and Wei Huang^{*a*,*b*}

^a Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210046, China. Fax: +86 25 8586 6533; Tel: +86 25 8586 6396; E-mail: <u>iamqbmei@njupt.edu.cn</u> (Q. Mei), <u>iamwhuang@njupt.edu.cn</u>, <u>iamdirector@fudan.edu.cn</u> (W. Huang).

^b Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Technology, Nanjing 211816, China. Fax: +86 25 5813 9988; Tel: +86 25 5813 9001

^c Institute of Molecular Engineering and Applied Chemistry, College of Metallurgy and Resources, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China

Contents:

1. Supplementary spectra and ¹H NMR dataS1-S11

2. Characterization of PzDPM and PzODPM: ¹H-NMR, ¹³C-NMR, and MADIL-TOF-MS spectra S11-S14

Fig. S1 Photoluminescence spectra ($\lambda_{ex} = 360$ nm) of PzDPM recorded in different solvents.

Fig. S2 Normalized photoluminescence spectra ($\lambda_{ex} = 360$ nm) of PzODPM recorded in different solvents.

Fig. S3 UV-vis spectra of **PzDPM** (blank line) and with Fe^{3+} (left) or Cr^{3+} (right) (red line), and in the presence of both Cu^{2+} and Fe^{3+} (left) or Cr^{3+} (right) (blue line), as well as UV-vis spectra of **PzODPM** (green line) and with Fe^{3+} (left) or Cr^{3+} (right) (Magente line).

Fig. S4 Fluorescence response ($\lambda_{ex} = 360$ nm) of **PzDPM** (20 μ M) to 4 equiv of Hg²⁺ in MeCN containing stated metal ions. Metal ions: Ag⁺, Cd²⁺, Co²⁺, Cr³⁺, Cu²⁺, Fe³⁺, K⁺, Mg²⁺, Na⁺, Ni²⁺, Pb²⁺, Zn²⁺.

Fig. S5 Fluorescence response ($\lambda_{ex} = 360$ nm) of **PzDPM** (20 μ M) to 4 equiv of Cu²⁺ in MeCN containing stated metal ions. Metal ions: Ag⁺, Cd²⁺, Co²⁺, Cr³⁺, Hg²⁺, Fe³⁺, K⁺, Mg²⁺, Na⁺, Ni²⁺, Pb²⁺, Zn²⁺.

Fig. S6 Benesi–Hildebrand plot (absorbance of 500 nm) of **PzDPM** toward Hg^{2+} , assuming 1:2 stoichiometry of association between **PzDPM** and Hg^{2+} . The Benesi–Hildebrand

equation is given as follows:
$$\frac{1}{A - A_0} = \frac{1}{K(A - A_0)[Hg^{2+}]^2} + \frac{1}{A_{\text{max}} - A_0}$$

Fig. S7 Job's plot for evaluation of the 2:3 binding stoichiometry between **PzDPM** and Hg^{2+} in MeCN. The total concentration of **PzDPM** and Hg^{2+} is 200 μ M.

Fig. S8 Calculation process of the detection limit of PzDPM toward Hg^{2+} .

Fig. S9 Changes in absorption spectra of **PzODPM** (20 μ M) in MeCN with various amounts of Hg²⁺ ions ($\lambda_{ex} = 360$ nm) after 3 min. Inset of: absorption spectra of **PzODPM** (20 μ M) in MeCN in the presence of 1.0 – 10.0 equiv of Hg²⁺ ions after 3 min.

Fig. S10 Benesi–Hildebrand plot (absorbance of 419 nm) of **PzODPM** toward Hg²⁺, assuming 1:1 stoichiometry of association between **PzODPM** and Hg²⁺. The Benesi–Hildebrand equation is given as follows: $\frac{1}{A-A_0} = \frac{1}{K(A-A_0)[Hg^{2+}]} + \frac{1}{A_{max} - A_0}$

Fig. S11 Partial ¹H NMR (400 MHz) titrations of **PzODPM** in DMSO- d_6 with Hg(ClO₄)₂ in CD₃CN: (1) 0.5 equiv; (2) 1.0 equiv; (3) 2.0 equiv; (4) 3.0 equiv; (5) 4.0 equiv.

Fig. S12 Partial ¹H NMR (400 MHz) titrations of **EPz** in DMSO- d_6 with Hg(ClO₄)₂ in CD₃CN: (1) 1.0 equiv; (2) 2.0 equiv; (3) 3.0 equiv.

Fig. S13 The photograph of **PzDPM** (10 mM) in MeCN in the presence of Hg²⁺ (20 mM).

Fig. S14 Normalized UV-vis spectra of **PzDPM** without (blank line) and with Cu^{2+} (3 equiv, blue line) and **PzODPM** (red line) in MeCN.

Fig. S15 The emission intensity ratio of the marked wavelength as a function of the ratio of $[Cu^{2+}]/[PzDPM]$.

Fig. S16 Calculation process of the detection limit of PzDPM toward Cu^{2+} .

Fig. S17 Luminescence spectra ($\lambda_{ex} = 360 \text{ nm}$) and emission photos (inset, $\lambda_{ex} = 365 \text{ nm}$) of **PzDPM** (20 μ M) in MeCN upon addition of Hg²⁺ and Cu²⁺. (a) only **PzDPM**; (b) **PzDPM** with 2.0 equiv of Hg²⁺; (c) **PzDPM** with 2.0 equiv of Cu²⁺; (d) **PzDPM** with 2.0 equiv of Hg²⁺ and 2.0 equiv of Cu²⁺.

Fig. S18 Luminescence spectra ($\lambda_{ex} = 360 \text{ nm}$) of **PzDPM** (10 μ M) in the presence of ClO⁻ (0.2 *m*M) in 1 : 4 (v/v) MeCN : Tris–HCl (10 mM) with different pH value. Inset: Fluorescence intensity of **PzDPM** (10 μ M) in 1 : 4 (v/v) MeCN : Tris–HCl (10 mM) with and without ClO⁻ (0.2 *m*M) measured as a function of pH.

Fig. S19 Luminescence spectra ($\lambda_{ex} = 360 \text{ nm}$) of **PzDPM** (10 μ M) without (a) and with (b) ClO⁻ (0.2 *m*M) in MeCN and Tris–HCl (10 mM, pH = 7.0) mixtures with different Tris–HCl (10 mM, pH = 7.0) fractions. Inset: the profile of fluorescence intensity of **PzDPM** (10 μ M) without (blank line) and with (red line) ClO⁻ (0.2 *m*M) *vs.* solvent composition of the MeCN and Tris–HCl (10 mM, pH = 7.0) mixtures.

Fig. S20 Changes in absorption spectra of **PzDPM** (10 μ M) in 1 : 4 (v/v) MeCN : Tris–HCl (10 mM, pH = 7.0) with various amounts of ClO⁻ ions ($\lambda_{ex} = 360$ nm) after 20 min. Inset of: titration curve of $A_{363 \text{ nm}}$ vs. ClO⁻ concentration.

Fig. S21 Normalized UV-vis and emission spectra of **PzDPM** without (blank line) and with ClO^{-} (30 equiv, red line) and **PzODPM** (blue line) in 1 : 4 (v/v) MeCN : Tris-HCl (10 mM, pH = 7.0).

Fig. S22 Changes in emission spectra of **PzDPM** (10 μ M) in 1 : 4 (v/v) MeCN : Tris–HCl (10 mM, pH = 7.0) with various amounts of ClO⁻ ions ($\lambda_{ex} = 360$ nm) after 20 min. Inset of: titration curve of $A_{363 \text{ nm}}$ vs. ClO⁻ concentration

Fig. S23 ¹H NMR of PzDPM in CDCl₃.

Fig. S24 ¹³C NMR of PzDPM in CDCl₃.

Fig. S25 MADIL-TOF mass spectrum of PzDPM.

Fig. S27 13 C NMR of PzODPM in DMSO- d_6 .

Fig.S28MADIL-TOFmassspectrumofPzODPM(matrix:trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB))