Submicron silica spheres decorated with silver nanoparticles as a new effective sorbent for inorganic mercury in surface waters

Tanya Yordanova,^a Penka Vasileva, *^b Irina Karadjova^a and Diana Nihtianova^{c,d}

^a Department of Analytical Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia, Bulgaria

^b Laboratory of Nanoparticle Science and Technology, Department of General and Inorganic Chemistry, Faculty of Chemistry and

^c Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Sofia, Bulgaria

^d Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria

Electronic Supplementary Material (ESI) for Analyst

Table 1S. Instrumental parameters for Thermo Scientific, XSeries 2 ICP-MS spectrometer

RF Power	1.4 kW				
Argon flow rates:					
Cool gas	$14 \mathrm{L} \mathrm{min}^{-1}$				
Auxiliary gas flow	$0.65 \mathrm{L} \mathrm{min}^{-1}$				
Nebulizer gas flow	0.85 L min ⁻¹				
Nebulizer	Concentric				
Sample uptake	0.6 mL min^{-1}				
Uptake and wash time	60 s				
Integration time	0.3 s				
Replicates	3				
Dwell time per isotope	20 ms				
Sample uptake and wash time	60 s				

Pharmacy, University of Sofia, Bulgaria; E-mail: pvasileva@chem.uni-sofia.bg

Table 2S. Sampling sites, Geographical coordinates: site 1 (river Iskar, 42°49'14"N,23°22'13"); site 2 (river Maritsa, 42°16'33'24.5N, 23°41'06.17E); site 3 (Black sea Krapets,43°36'60.0"N, 28°35'60.0"E); site 4 (Black sea Kamtchia (esuarine water): 43°00'60.0"N,27°53'60.0") and characteristics.

Sample sites	pН	Dissolved O_2 (mg L ⁻¹)	NO ₃ ⁻ (μM)	NO ₂ ⁻ (μM)	HPO4 ²⁻ (µM)	$\frac{\text{DOC}}{(\text{mg } \text{L}^{-1})}$
Site 1 river Iskar*	7.3	8.2	7	0.04	0.9	4.5 ± 0.1
Site 2 river Maritsa**	7.2	7.9	6	0.02	0.6	5.6 ± 0.2
Site 3 Black sea Krapets***	8.1	7.3	8	0.04	0.6	2.5 ± 0.2
Site 4 Black sea Kamtchia	8.0	7.7	9	0.03	0.5	2.9 ± 0.2

* Values of major chemical components: $[Ca^{2+}] = 0.4 \text{ mM}$, $[Mg^{2+}] = 0.2 \text{ mM}$, $[Cl^{-}] = 0.2 \text{ mM}$.

** Values of major chemical components: $[Ca^{2+}] = 0.95 \text{ mM}$, $[Mg^{2+}] = 0.25 \text{ mM}$, $[Cl^{-}] = 0.1 \text{ mM}$.

*** The values of major chemical components of Black seawater have not varied significantly with sampling location; averaged concentrations: $[Ca^{2+}] = 5.8 \text{ mM}$, $[Mg^{2+}] = 0.026 \text{ M}$, $[Cl^{-}] = 0.27 \text{ M}$.

Table 3S. SAED data of SiO₂/AgNPs sorbent particles after exposure to 1 μ g iHg solution;(hkl)_f—double electron diffraction effects; SAED interpretation: accuracy 1%

d (A°)	Relative intensity	Ag	Ag	Ag_2Hg_3	Hg
		PDF 89-3722	PDF 87-0598	PDF 65-3156	PDF 01-1017
		a = 4.0855(1) Å	a = 2.8862 Å,	a = 10.0506 Å	a = 3.459 Å,
		_	$c=10.000~\text{\AA}$		c = 6.699 Å
		SG Fm3m	P6 ₃ /mmc	SG I23	SG R
2.789	m	-	-	(320) _f	101
2.390	S	111	101	330, 411	-
2.063	S	200	-	422	-
1.424	m	-	-	-	021
1.255	m	311	008	800	-
1.035	m-w	400	-	932	-

s — strong; m — middle; m-w — middle weak

Scheme S1 Formation of silica-silver nanocomposite structure by functionalization of the core surface and chemisorption of preformed silver nanoparticles (colloid mixing method)

Fig. S1 UV-Vis absorbance spectrum of starch-stabilized silver nanoparticles in colloidal solution (with inset of a photograph)

Fig. S2 (A) TEM image (with inset of a size distribution histogram determined by counting of 150 particles using Image J software) and (B) HRTEM image of preformed starch-stabilized silver nanoparticles. Some polyhedral nanoparticles are surrounded by circles.

Fig. S3 (A) SEM image and (B) particle size distribution histogram of SiO₂-NH₂ determined by counting of 450 particles using Image J software

Fig. S4 UV-Vis absorption spectral changes observed for $SiO_2/AgNPs$ aqueous dispersion upon the addition of iHg solution